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Examiner: 1. Prof. Dr. Herbert Werner

2. Prof. Dr. Zachary Sunberg

External: University of Califonia, Berkeley

Start Date: 16.10.2019
Due Date: 22.04.2020

30.09.2019, Prof. Dr. H. Werner

3



Hereby I declare that I produced the present work myself only with the help of the indicated
aids and sources.

Hamburg, 22.04.2020 Lasse Peters



Abstract

Safe and efficient interaction with humans requires an autonomous agent to understand the
effects of its actions on their decisions. These coupled interactions of multiple players with
differing objectives are well-described by a general-sum differential game. Recent work
has put forth efficient approximations to differential games that admit noncooperative
equilibrium solutions at real-time planning rates. However, an application of these
methods to human-robot interaction (HRI) is impeded by the fact that, in the current
formulation, they do not admit to model an important aspect of such problems, namely,
intention uncertainty. This type of uncertainty arises if a robot does not know which
equilibrium strategies humans may adapt to achieve their goal (equilibrium uncertainty)
or if it has incomplete knowledge of their objectives (objective uncertainty). This work
develops an approach for accommodating both types of intention uncertainty in game-
theoretic formulations of HRI problems. For this purpose, a particle filtering technique is
proposed that estimates the likelihood of possible human behaviors, i.e. their objectives
and corresponding equilibrium strategies, from observations of the state. Based on this,
planning is performed by choosing the robot strategy from the inferred most likely game
solution. An evaluation of this method in simulations of multi-player intersection-driving
scenarios shows that the developed approach clearly outperforms a game-theoretic planner
that ignores intention uncertainty. By inferring the most likely human behavior, the robot
is able to predict trajectories more accurately, and by invoking the strategy from the
most likely game solution the robot is able to reduce the cost for all players. In addition
to this main contribution, this work proposes an approach for fitting objective models
to datasets of noise-corrupted partial state observations of multi-player interactions; i.e.
the inverse differential game problem. This approach works by numerically inverting
the solver proposed in [1] via differentiable programming and thus allows gradient-based
optimization of the model parameters. A validation on synthetic datasets of observed
multi-player interactions demonstrates that the proposed approach can reliably fit a model
that matches the observations and accurately predicts the objective parameters of the
model that was used to generate the data.
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Chapter 1

Introduction

In order for a robot to be truly autonomous it needs to be capable of interacting with
environments that are shared with other agents. Naturally, these shared environments are
manipulated by multiple decision making agents at a time and different agents may pursue
different objectives. Interactions in such shared environments are commonly referred to as
multi-agent decision making problems. This work focuses on a special subclass of these
problems: human-robot interaction (HRI).
Safe and efficient human-robot interaction (HRI) is one of the biggest technical challenges
that has been encountered since early attempts at autonomy. A common way of approaching
this problem is from an optimal control perspective; that is, by assuming a behavior
model for humans and then choosing actions for the autonomous agent that minimize
a cost function given this model. To simplify matters, the decision making process is
often decoupled by first making an open-loop prediction of the decisions of other agents
and subsequently optimizing the ego-agent’s decisions based on these fixed predictions
[2, 3]. However, for any non-trivial interaction scenario, the success of a given agent
depends not only on its own actions but also on the decisions of others. By ignoring this
dependence, an autonomous agent is incapable of discovering strategies which exploit
reactions. Furthermore, trusting a nominal prediction may lead to unexpected or even
unsafe behavior of a robot. The latter aspect is particularly important when interacting
with humans. To address this problem within the optimal control framework, human
reactions may be modeled by hand-specifying a feedback policy [4, 5] or by fitting behavior
to data [6–9].
An alternative to specifying a behavior model directly is to model humans as rational
agents and specify or learn a cost function that captures their objectives. Given this
representation, the explicit behavior model is the solution of an equilibrium problem in
which each agent seeks to minimize their respective cost. Formally, this choice of model
corresponds to a dynamic game, played out between the robot and the humans. If the
state evolves in continuous time — as is commonly the case in robotics — such problems
are referred to as differential games. In this framework, the dynamics of the environment
are described by a differential equation which depends upon each player’s input, and the
objectives of all players are expressed by their respective cost functions. By solving such
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a game to an appropriate equilibrium concept — e.g. a Nash equilibrium in the case of
noncooperative scenarios — one can recover complex interactive behaviors, even from
simple and easy-to-understand objective functions [1].
Despite the expressiveness of differential games, the application of differential game theory
to practical interaction problems is impeded by a key characteristic of real-world interaction
scenarios: presence of uncertainty. This uncertainty may arise from incomplete knowledge
of the state, the dynamics, the objectives of other players, and the equilibrium that other
players aim for. While the first two aspects are inherent properties of the environment, the
latter two are aspects of the intentions and the decision making process. Accommodating
this intention uncertainty in differential games for HRI is the focus of this work.

1.1 Motivation

For illustration of issues arising from intention uncertainty, consider the example of a
real-world interaction between a motorist and a cyclist at an intersection depicted in
Figure 1.1.1.
At the initial time (Figure 1.1.1a) each road user may not know the exact objective, e.g.
the goal location or the aggressiveness, of the other. Furthermore, even if they knew the
other player’s objective, the interaction may allow for multiple solutions. For example, if
the driver of the car knew that the cyclist wishes to go straight, the problem still may
allow for two different solutions: one in which the bicycle passes in front of the car, and
one where it passes in the back.
However, as time progresses, they can gather information by observing the behavior of the
other. At time t = 2 s (Figure 1.1.1b) the driver can conclude that the cyclist is unlikely
to pass the car in the front but may still be uncertain about her goal location. Finally, at
time t = 4 s the goal locations of both players become apparent.
Of course, in this example, both players are human agents who may solve this task with
ease. However, if one of the players were replaced with a robot, the sources of uncertainty
discussed above pose a challenging problem for autonomous decision making. If a robot in
this example made wrong assumption about the intentions of other players, both players
may incur a high cost, e.g. if the chosen pair of strategies resulted in a collision. Hence,
understanding other players’ intentions and considering the associated uncertainty is
crucial to safe and efficient interaction.

1.2 Additional Background and Related Work

To put this work in context, this section provides an overview of related work that is
concerned with modeling and planning in multi-agent interaction scenarios. For this
purpose, both game-theoretic approaches as well as techniques that can be broadly
categorized as partially observable Markov decision process (POMDP) approximations are
surveyed.
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(a) t = 0 s (b) t = 2 s (c) t = 4 s

Figure 1.1.1: Example of a real-world interaction between a motorist (starting top left)
and a cyclist (starting bottom right) at an intersection as recorded in [10].

1.2.1 Game-Theoretic Approaches

Various works have proposed methods for incorporating intention uncertainty by casting
the interaction problem as a differential game of incomplete information. Existing game-
theoretic models that explicitly consider incomplete information are limited to special
cases of two-player zero-sum settings [11, 12] and application of such approaches has thus
far only been demonstrated for a limited number of special examples; e.g. a special class
of homing problems with linear dynamics and quadratic costs [13], games with special
information structure that prohibit information gathering [14], and problems in which the
only missing information is the initial state of the system [15, 16]. Due to the limitation
to a narrow class of specialized examples, such approaches are not suitable for modeling
complex HRI problems similar to the introductory example given in Section 1.1.
A common approach to dealing with intention uncertainty in complex interaction problems
is to construct a controller by modeling players with uncertain intentions as adversaries, i.e.
casting the planning problem as a zero-sum game by reasoning about worst case decisions
of other players. Examples of this approach in which, from a robust control perspective,
other players are treated as bounded disturbance to the system are given in [17, 18]. This
technique can be suitable for problems in which safety is the main concern. However, as
this approach ignores the fact that other players follow individual objectives, which in
general may not be adversarial to the planner, it typically produces overly conservative
strategies and is incapable of exploiting reactions of others. For example, a robot using
this approach in a navigation problem like the example introduced in Section 1.1 can not
impose a tight bound on the human worst case decision sequence and thus may conclude
that all of its goal directed strategies are unsafe. This problem has been previously
described as the freezing robot problem [19].
To avoid the issue of overly conservative strategies, general-sum formulations of interaction
problems use the true — potentially non-adversarial — objectives of all players. However,
solution methods to such formulations of differential games are only known for problems
of complete information [12]. Furthermore, even in the case of fully observed games the
dependence of each player’s actions on the decisions of others poses a computational
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challenge. Therefore, a common approach is to simplify the problem by establishing a
leader-follower hierarchy amongst players; thus, converting the problem to a Stackelberg
dynamic game [20]. Such approaches have been demonstrated in the context of HRI
[21–23] but have been reported to yield undesirably aggressive behavior of the leader [24].
Other approaches avoid this pure leader-follower structure and aim for more symmetric
roles of different players. In [24], the interaction is modeled in a hierarchical approach
that solves a fully coupled dynamic game to inform a low-level controller. However, this
approach solves the high-level Nash game through discretization of the state and input
space and thus does not easily scale to multiple players.
To avoid the curse of dimensionality while maintaining symmetric roles of different players,
recent work has focused on local approximations to Nash equilibria in differential games
[1, 25, 26]. For example, Spica et al. [26] employ an iterative best response algorithm that
successively updates each player’s strategy by locally solving an optimal control problem
in which the strategies of other players are fixed. Fridovich-Keil et al. [1] propose a method
akin to differential dynamic programming that approximates a Nash solution by solving
successive linear-quadaratic (LQ) approximations of the game.

1.2.2 POMDP Approximations

Several works address intention uncertainty by modeling certain aspects of human behavior
as latent state variables and maintaining belief over these variables to compute optimized
decisions.
In the field of autonomous driving, inference of behavioral parameters has been demon-
strated to provide a significant benefit when interacting with other drivers [4] and a
significant amount of work has focused on using this information in approximate POMDP
schemes [4, 5, 27, 28]. However, these works typically use highly simplified models like
IDM [29] and MOBIL [30] for the behaviors of other players. Similarly, Cunningham et al.
[31], Galceran et al. [32], and Mehta et al. [33] use a library of hand-engineered feedback
strategies to model the behavior of other agents. While these works demonstrate the
benefit of employing behavioral inference, the policies used to model the behavior of other
agents are somewhat arbitrarily chosen and may not specify suitable behavior for all cases.
Other works model humans as rational agents seeking to maximize their own objective
function. In [34] and [35], human actions are predicted as the outcome of a noisily-rational
decision process [36] with unknown goals. Therein, inference is used to reason about both
the intentions of humans as well as the accuracy of the predictive model. However, these
works treat agents as independently optimizing players and capture interaction between
multiple agents only indirectly by reducing the confidence of predictions.
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1.3 Contributions and Outline

This thesis has two main goals. First, to develop a planning approach that models intention
uncertainty in game-theoretic formulations of HRI problems. Second, to investigate the
utility of using such an approach in comparison to a game-theoretic planner that ignores
this uncertainty. After providing the theoretical background that forms the foundations of
this thesis in Chapter 2, the contributions of this work towards these goals are laid out in
four chapters.
First, Chapter 3 presents an open-source software framework that has been developed
as part of this thesis to aid the design and solution of differential games. This chapter
discusses the design of the framework and provides benchmark results against existing
implementations.
Thereafter, two types of intention uncertainty are examined in the context of HRI.
Chapter 4 analyzes scenarios in which a robot knows the human objectives but uncertainty
arises from the fact that there are multiple strategies that humans may adopt to achieve
their respective objectives. In this chapter, a new game-theoretic planning approach is
proposed that addresses this type of uncertainty by reasoning about the likelihood of
multiple equilibrium solutions to the underlying game.
Chapter 5 considers scenarios in which a robot has incomplete knowledge of human
objectives. Here, the approach proposed in Chapter 4 is extended to infer human objectives
while still considering multiple human strategies within each possible objective.
In both chapters, the proposed approaches are evaluated with respect to their utility for
prediction and closed-loop planning in simulations of scenarios similar to the example
given in Section 1.1.
Chapter 6 takes a first step towards future work in objective identification from large-scale
datasets of observed behavior. To this end, an approach for objective identification from
datasets of noise-corrupted partial state observations is proposed that works by numerically
inverting the game solver presented in [1] via differentiable programming.
Finally, Chapter 7 summarizes the main results and provides an outlook towards future
work.
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Chapter 2

Fundamentals

This chapter provides the relevant theory used throughout this work to develop algorithms
for game-theoretic planning under intention uncertainty. For this purpose, this chapter is
divided into two parts.
Section 2.1 introduces the relevant fundamentals of differential games and discusses solution
approaches to such problems. Section 2.2 gives a brief introduction to state estimation
and discusses exact Bayesian inference as well as its approximation via particle filtering.

2.1 Noncooperative N-Player General-Sum Differen-
tial Games

Game theory is a conceptual framework that deals with the strategic interaction among
multiple decision making agents, called players. Each player in a game-theoretic problem
has an individual objective function that captures its preference ordering among multiple
alternatives. For a non-trivial game, the objective function of a player depends not only
on its own choices, but also on the decisions of other players. This mutual dependence of
objective values induces a coupling between the actions of different players. Within the field
of game theory there exists a fine-grained distinction of different problem classes, where
each of these classes is characterized by various attributes. A thorough taxonomy of games
and further theoretical background can be found in [37]. Following the nomenclature
introduced in [37], this work is concerned with the class of noncooperative N-player
general-sum differential games.
This problem class is characterized by the following properties:

Noncooperative: Players in this game are not allowed to form coalitions. That is,
decisions can not be made collectively or with full trust that others may follow an a
priori negotiated joint strategy that is beneficial for all players.

N-Player: The number of players, N , in the considered games may be an arbitrary
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positive integer1. Specifically, the theory presented here holds beyond the 2-player
setting — a special case for which many results have been published [2, 38–40].

General-Sum: The objective functions for different players are not constrained to a
special structure but may encode arbitrary objectives that may be fully or partially
competitive. Specifically, the sum of gains and losses of all payers may be unequal
to zero. This contrasts with the well known special case of zero-sum games, where
the objective functions of two players (or groups of players) always add up to zero
and thus players are complete adversaries.

Differential Game: The problems studied belong to a special subclass of dynamic
games, problems in which players observe each other’s actions after every move and
can react accordingly. Specifically, in differential games the decision process takes
place in continuous-time and the state evolves according to a differential equation.

The remainder of this section proceeds as follows: First, the mathematical problem
formulation for this class of games is presented (Section 2.1.1). Based on this, the notion
of solution concepts for these problems are introduced (Section 2.1.2). Thereafter, solution
methods are discussed, first showing the analytic solution for the special case of LQ games
(Section 2.1.3) and subsequently presenting a recent approach that utilizes successive LQ
approximations to solve nonlinear nonquadratic games.

2.1.1 Problem Formulation

A noncooperative N -player general-sum differential game is characterized by potentially
nonlinear system dynamics

ẋ = f(t, x, u1:N) . (2.1.1)

Here, each of N players is in control of an input, ui ∈ Rmi , i ∈ [N ] ≡ {1, . . . , N}, to the
system. By means of this input they gain control authority to influence the evolution of
the joint state, x ∈ Rn. Preference ordering among states and inputs for each player is
captured by their respective cost functions, Ji, defined as an integral

Ji (u1:N(·)) ,
∫ T

0
gi (t, x(t), u1:N(t)) dt,∀i ∈ [N ] , (2.1.2)

of time-varying running costs, gi, over a finite horizon, t ∈ [0, T ]. Thus, player ith’s cost,
Ji, depends implicitly upon the state trajectory, x(·), which in turn depends upon initial
state, x(0), and control signals, u1:N(·), as defined by Equation (2.1.1).

1Note, however, that for N = 1 the problem may not be considered but rather reduces to a single-player
optimal control problem.
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In this scenario, each player aims to minimize their respective cost function under the
constraints of the dynamics by choosing a suitable state feedback strategy, γi ∈ Γi, i.e.

ui(t) ≡ γi(t, x(t)) , (2.1.3)

mapping time and state to their respective control input. Here, the strategy space, Γi, for
player i is the set of measurable functions γi : [0, T ]× Rn → Rmi .
Note that, in this formulation, player ith’s decision at time t only depends upon the current
state, x(t), and the time itself while the inputs of all other players, u−i , {uj}j∈[N ]\i,
remain unobserved. The cost that each player incurs when competing in this game does
not only depend on their own strategy but rather on the choices of all players.

Additional Nomenclature

This work uses the term strategy profile to refer to the aggregate of strategies over all
players and uses the shorthand γ , {γi}i∈[N ]. Furthermore, the N − 1 tuple of strategies
including all strategies but the strategy of player j is denoted γ−j , {γi}i∈[N ]\j.

2.1.2 Solution Concepts

In general, there exist multiple different notions of optimal play for the problem formalized
in Section 2.1.1 that are commonly referred to as solution concepts or equilibrium concepts.
Different solution concepts are characterized by the approach they take to resolve potential
conflicts between competing objectives of multiple players, and assumptions about the
information players can access at different stages of the game.
One relatively intuitive approach is the solution for a social optimum, a strategy profile
for which the sum of costs for all players is minimized. In this case, the problem may
be viewed as a single-player optimal control problem with the decision variable being
the joint strategy for all players. However, this solution concept requires an a priori
negotiated and trusted agreement that strictly binds all players to this strategy; it neglects
the noncooperative aspect of the problem. If a player can not fully trust others to adhere
to the agreement, adopting a social optimum strategy poses the risk of incurring a high
cost if another player decides to unilaterally deviate from this equilibrium to improve their
payoff.
In a noncooperative scenario, rather than fully trusting each other, players must aim
for solution points at which no player is unilaterally incentivized to change strategy.
This noncooperative equilibrium concept is known as Nash equilibrium. Considering an
overloaded notation of the player cost, Ji, to depend upon strategies rather than control
signals, i.e. Ji(γ1; . . . ; γn) ≡ Ji(γ1(·, x(·)); . . . ; γN(·, x(·))), formally, a Nash equilibrium is
attained if each player follows a strategy, γ∗i , such that the strategy profile satisfies
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J∗1 = J1(γ∗1 ; γ∗2 ; . . . ; γ∗N) ≤ J1(γ1; γ∗2 ; . . . ; γ∗N),
J∗2 = J2(γ∗1 ; γ∗2 ; . . . ; γ∗N) ≤ J2(γ∗1 ; γ2; . . . ; γ∗N),

...
J∗N = JN(γ∗1 ; γ∗2 ; . . . ; γ∗N) ≤ JN(γ∗1 ; γ∗2 ; . . . ; γN),

(2.1.4)

for all γi ∈ Γi,∀i ∈ [N ].
For a general game as defined in Section 2.1.1, finding Nash equilibria is known to be
computationally intractable [41]. Therefore, several alternative equilibrium concepts have
been proposed to approximate this problem. A common relaxation is to restrict the
search to a local Nash equilibrium [25, 42–44]; that is, only requiring the conditions in
Equation (2.1.4) to hold for γi in a local neighborhood of γ∗i . Further simplification can
be achieved by constraining the strategy space. This may be done by considering only
open-loop strategies [43, 44], or by searching over a subspace of feedback strategies, e.g.
considering only linear time-varying (LTV) feedback strategies[1, 45]. Other approaches
involve simplification of the problem by pre-specifying an ordering amongst players,
allowing earlier players to announce their strategies and expect later players to react
accordingly[21, 46]. By establishing this kind of leader-follower structure, the problem
is converted to a Stackelberg dynamic game and the corresponding solution concept is
commonly known as Stackelberg equilibrium [20].
The behavior associated with each solution concept can be qualitatively different as it
reflects the underlying assumptions about hierarchies, the information structure, and
each player’s decision-making process. Depending on the application domain, certain
equilibrium concepts are more suitable than others to model the behavior of agents. For
example, in the domain of human-robot interaction for navigation and collision avoidance
problems, Stackelberg solutions have been reported to yield overly aggressive behavior
of the leader [24]; or, equivalently, overly conservative behavior of the follower. Nash
solutions, on the other hand, model symmetric roles and information structures and may be
considered more suitable for this application domain as they encode shared responsibility
for collision avoidance. Similarly, local approximations to Nash equilibria have been
demonstrated to yield highly interactive strategies that qualitatively resemble global Nash
strategies [1, 44, 47].

2.1.3 Analytic Solutions to Linear-Quadratic Games

In general, a differential game of the form described in Section 2.1.1 can not be solved
tractably to a global Nash equilibrium [41]. However, a special subclass of these problems,
called LQ games, characterized by linear dynamics and quadratic costs, allows for a closed-
form solution via coupled Riccati differential equations [37, 48]. This section outlines a
polynomial time algorithm for solving LQ games, closely following the presentation in [37].
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Time Discretization

While the original problem has been formulated in continuous-time (c.f. Section 2.1.1), in
practice, an implementation of a solver for online planning is executed in discrete time
intervals. Therefore, here, the discrete-time LQ game solution is discussed where the
discrete-time dynamics may be obtained from a zero-order hold of the inputs, ui, over
each time interval, ∆t, i.e.

x̂(t+ ∆t) = x̂(t)+
∫ t+∆t

t
f(τ, x̂(τ), û1:N(τ)) dτ

where ûi(τ) = γi(t, x̂(t)),∀i ∈ [N ], and
x̂(0) = x(0). (2.1.5)

Problem Formulation

We consider an discrete-time LQ version of the problem formulated in Section 2.1.1.
Without loss of generality, we set ∆t = 1, and use t ∈ [T ] as an index for the time step.
Accordingly, the system is characterized by time-discrete LTV dynamics

xt+1 = Atxt +
∑
i∈[N ]

Bi,tui,t , (2.1.6)

where Ai,t ∈ Rn×n is the system matrix at time step t and Bt ∈ Rn×m is the time-varying
input matrix, column-wise constructed from per-player input matrices Bi,t ∈ Rn×mi .
Furthermore, each player’s behavior is driven by an affine-quadratic objective

Ji(u1:N,0:T ) =
∑
t=0:T

gi,t(xt+1, u1:N,t),

where gi,t(xt+1, u1:N,t) =1
2x

T
t+1Qi,t+1xt+1 + xTt+1li,t+1

+
∑
j∈[N ]

1
2u

T
j,tRij,tuj,t + uTj,trij,t. (2.1.7)

Here, Qi,t+1 ∈ Rn×n, li,t+1 ∈ Rn characterize the running state cost of the ith’s player at
time step t+1, and Rij,t ∈ Rmj×mj , rij,t ∈ Rmj parametrize the corresponding time-varying
input costs.

Approach

For this LQ problem it can be shown that, if a Nash equilibrium exists, the corresponding
equilibrium strategies take the time-varying affine form

γ∗i,t(xt) = −Pi,txt − αi,t (2.1.8)
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with feedback gain Pi,t ∈ Rmi×n and feed forward term αi,t ∈ Rmi for player i at time step
t. The sequence of Pi,t and αi,t must satisfy the following set of linear matrix equations:

[Rii,t +BT
i,tZi,t+1Bi,t]Pi,t +BT

i,tZi,t+1
∑
j∈[N ]
j 6=i

BT
j,tPj,t = BT

i,tZi,t+1At, and (2.1.9)

[Rii,t +BT
i,tZi,t+1Bi,t]αi,t +BT

i,tZi,t+1
∑
j∈[N ]
j 6=i

BT
j,tαj,t = BT

i,tζi,t+1 + rii,t , (2.1.10)

∀i ∈ [N ],∀t ∈ [T ]. Here, Zi,t ∈ Rn×n represents the quadratic component of the cost-to-go
obtained recursively from

Zi,t = F T
t Zi,t+1Ft +

∑
j∈[N ]

P T
j,tRij,tPj,t +Qi,t , (2.1.11)

with the closed-loop system matrix, Ft ∈ Rn×n, defined as

Ft , At −
∑
i∈[N ]

Bi,tPi,t,∀t ∈ [T ]. (2.1.12)

Furthermore, ζi,t ∈ Rn is the linear component of the cost-to-go obtained recursively from

ζi,t = F T
i (ζi,t+1 + Zi,t+1βt) + li,t+1 +

∑
j∈[N ]

P T
j,t(Rij,tαj,t − rij,t) (2.1.13)

with the state feed-forward term, βt ∈ Rn, defined as

βt , −
∑
j∈[N ]

BT
j,tαj,t. (2.1.14)

Solution

We formulate a dynamic program based on the approach presented above to solve for the
optimal strategies, γ∗i , defined by Pi,t and αi,t.
Starting at the final time, let Zi,T+1 = Qi,T+1 and ζi,T+1 = li,T+1 be the parametrization
of the final-state-cost, gi,T (xT+1, u1:N,T ).
Working backwards in time, for every time step we obtain the strategy profile segment, γt,
that determines each player’s feedback policy applied at time t and moves the system to
xt+1, by solving Equations (2.1.9) and (2.1.10). Numerically, this may be done efficiently
by formulating a single matrix equation

StXt = Yt (2.1.15)
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with matrices

St ,


R11,t +BT

1,tZ1,t+1B1,t BT
1,tZ1,t+1B2,t · · · BT

1,tZ1,t+1BN,t

BT
2,tZ2,t+1B1,t R22,t +BT

2,tZ2,t+1B2,t · · · BT
2,tZ2,t+1BN,t

... ... . . . ...
BT
N,tZN,t+1B1,t BT

2,tZ2,t+1B2,t · · · RNN,t +BT
2,tZ2,t+1BN,t

 ,

Xt ,


P1,t α1,t

... ...
PN,t αN,t

 , Yt ,


BT

1,tZ1,t+1At BT
1,tζ1,t+1

... ...
BT
N,tZN,tAt BT

N,tζN,t+1

 , (2.1.16)

where St ∈ Rm×m, Xt ∈ Rm×(n+1) and Yt ∈ Rm×(n+1). Using this formulation, the system
of equations may be solved via a LU decomposition of the dense square matrix St.
After obtaining the strategy profile segment for time step t, we recurse on Equations (2.1.11)
and (2.1.13) to propagate the cost-to-go backwards in time. This procedure is repeated
until we reach the initial time step, t = 0.

2.1.4 Iterative Linear-Quadratic Approximations for Nonlinear
Nonquadratic Games

Many interactive scenarios relevant in practice are too complex to be well modeled by
a single LQ game. However, LQ games may still be used to capture the local nature of
these problems. Based on this idea, recent work introduced approximation methods that
approach N -Player general-sum games2 with nonlinear dynamics and nonquadratic costs
from the perspective of classical LQ games [1, 45]. This section outlines one such method,
the iterative linear-quadratic games (ILQG) algorithm presented in [1].

Algorithm

The high-level idea of ILQG is summarized in Algorithm 1. On an abstract level, the
approach extends the idea of the well known iterative linear-quadratic regular (ILQR)
algorithm [51, 52] — a method for smooth nonlinear single-player optimal control problems

— to the domain of N -player general-sum differential games. Given the initial joint state,
x0, initial strategies, {γ0

i }i∈[N ], system dynamics, f , player costs, {gi}i∈[N ], and problem
horizon, T , the algorithm iteratively updates the strategy profile until convergence using
the following steps:

1. Rollout Integrate the dynamics, f , forward, starting at x0 to simulate the joint state
trajectory, ξk, of the nonlinear system when applying the current strategies (line 3).

2A related approach has been studied earlier in [49, 50]. However, results presented there are limit to
two-player zero-sum scenarios.
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2. LQ Approximate Compute the local LQ approximation to the game along the
reference trajectory, ξk, by linearizing the dynamics and quadraticizing the cost
(line 4 – 5).

3. Solve LQ Game Update the strategies using the analytic solution to the LQ ap-
proximation (line 6 – 7).

Like ILQR, ILQG requires the problem to be sufficiently smooth in order to admit local
LQ approximations. That is, it requires the system dynamics, f , to be continuously
differentiable in {x, ui} and requires the running costs, gi, for each player to be twice
differentiable in {x, ui}, both uniformly in t, respectively.
To provide further insight, the remainder of this paragraph discusses the relevant details
for some of the subroutines:

LinearizeDynamics computes the Jacobian linearization of the system dynamics, f ,
along the operating point ξk. Let δx(t) , x(t)− x̂(t) and δui(t) , ui(t)− ûi(t) be
the deviation from the operating point, xki . The linear system approximation of f
about ξk is given by

δẋ(t) ≈ A(t)δx(t) +
∑
i∈[N ]

Bi(t)δui(t), (2.1.17)

with Jacobians A(t) = Dxf
∣∣∣
ξk

and Bi(t) = Dûi
f
∣∣∣
ξk

.

QuadraticizeCost computes the quadratic approximation of the running cost

gi (t, x(t), u1:N(t)) ≈ gi (t, x̂(t), ˆu1:N(t)) + 1
2δx(t)T (Qi(t)δx(t) + 2li(t))

+ 1
2
∑
j∈[N ]

δuj(t)T (Rij(t)δuj(t) + 2rij(t)) , (2.1.18)

with gradients li(t) = Dxgi
∣∣∣
ξk

, rij(t) = Duij
gi
∣∣∣
ξk

and Hessians Qi(t) = D2
xxgi

∣∣∣
ξk

,

Rij(t) = D2
ujuj

gi
∣∣∣
ξk

. Note that in this formulation, mixed partials D2
ujuk

gi and D2
xuj
gi

are neglected, as they rarely appear in cost structures of practical interest.

SolveLQGame solves the LQ game defined by the tuple (A, {Bi}i∈[N ], Qi, li, {Rij}i∈[N ],
{rij}i∈[N ], T ), using the dynamic program presented in Section 2.1.3. The result
of this computation is an affine strategy for each player that describes the local
behavior of each player for deviations from the current operating point, ξk,

γ̃ki (t, x(t)) = ûi(t)− P k
i δx(t)− αki (t). (2.1.19)

StepTowards updates the strategies, {γk−1
i }, with a step towards the local equilibrium

strategies,
γ̃ki (t, x(t)) = ûi(t)− P k

i δx(t)− ηαki (t), (2.1.20)
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where η ∈ (0, 1] is the relative step size.
Similar to (quasi-)Newton methods for single-objective optimization problems, the
scaling of the step size is motivated by the fact that the solution to the current
iterate is only valid for the local model (i.e. the LQ game) of the problem. However,
in contrast to single objective optimization problems, a simple line search over step
size η to ensure sufficient decrease in cost is not meaningful as each player has their
own respective cost function and player costs may conflict. Instead, in [1] a prefixed
small step size η has been reported to provide good convergence for many problems.
Note, however, that for this choice of step size convergence may not be guaranteed.

Converged determines convergence to a fixed point based upon the distance between
the state trajectories traced out when applying {γki } versus {γk−1

i }.

Approximate Local Nash Equilibria

If this algorithm converges at the Kth iteration, the resulting strategy profile, {γKi },
reproduces the operating point of the previous iterate, ξK−1, and constitutes a global
Nash equilibrium of the LQ approximation at that operating point. While it is tempting
to presume that such fixed points also satisfy the local Nash equilibrium concept of the
original problem, this is not always true because the LQ approximation neglects higher
order coupling terms between each player’s running cost, gi, and other players’ inputs,
u−i [1]. Therefore, this work uses the term approximate local Nash equilibrium for the
fixed points of Algorithm 1. Despite the subtle differences between approximate local
Nash equilibria and their non-approximate counterparts, they have been demonstrated to
exhibit similarly interactive strategies [1].

Algorithm 1 iterative linear-quadratic games (ILQG)
1: procedure ILQG(x0, {γ0

i }i∈[N ], f, {gi}i∈[N ], T )
2: for iteration k = 1, 2, . . . do
3: ξk ≡ {x̂(t), û1:N} ← GetTrajectory(f, x0, {γk−1

i }i∈[N ])
4: {A(t), Bi(t)} ← LinearizeDynamics(f, ξk)
5: {Qi(t), li(t), Rij(t), rij(t)} ← QuadraticizeCost(f, ξk)
6: {γ̃ki } ← SolveLQGame(A(t), Bi(t), Qi(t), li(t), Rij(t), rij(t), T )
7: {γki } ← StepTowards({γ̃ki }, {γk−1

i })
8: if Converged({γki }, {γk−1

i }) then
9: return {γki }

10: end if
11: end for
12: end procedure
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2.2 State Estimation for Hidden Markov Models

Environments are characterized by state and state dynamics. In this work, the term state
implicitly refers to the notion of complete or Markovian state. The Markov property entails
that future states are conditionally independent of past states, given the current state and
input [53–55]. Hence, a Markovian state is the best predictor for the future evolution of
the environment. Due to this predictive power, knowledge of the state is important for
optimal decision making.
However, many problems do not allow agents to directly observe this state and thus do not
admit access to perfect state information. Instead, the agent may receive observations, ot,
that are emissions of the latent state, st. Using this data, the agent can infer information
about the state of the environment. The aggregate information that the agent recovers
from observations is commonly represented by the belief,

bt(st) , p(st|o1:t), (2.2.1)

which corresponds to the conditional probability of the current state, st, given all observa-
tions, o1:t, received up to time t. In the case of Markovian state, the belief is a sufficient
statistic to compute an optimal decision at time t [54]. Therefore, being able to accurately
maintain this belief is crucial to solving problems characterized by state uncertainty.
A suitable model for these inference problems with Markovian state is the hidden Markov
model (HMM) and the process of maintaining the belief is commonly referred to as state
estimation. This section presents two approaches to state estimation for HMMs. First,
Section 2.2.1 briefly presents the exact Bayesian update for recursive state estimation.
Based on this, Section 2.2.2 presents an approximation to the Bayesian update, the particle
filter.

2.2.1 Exact Bayesian Inference

This section briefly outlines the idea of Bayesian inference for HMMs to provide better
understanding of the inference strategy developed throughout this work. A thorough
discussion of fundamentals of probability theory and statistics can be found in [53, 56]
and is beyond the scope of this work.
As a minimal example, consider the dynamic Bayesian network (DBN) representation of
the HMM depicted in Figure 2.2.1. In this representation, shaded nodes correspond to the
observed data, here o1:t, while the other variables remain unobserved, here the sequence of
latent states, s1:t. For this statistical model, the recursive belief update may be derived as
follows:
We begin by expanding the definition of conditional probability in the belief (c.f. Equa-
tion (2.2.1)), i.e.

bt(st) , p(st|o1:t) = p(st, o1:t)
p(o1:t)

. (2.2.2)

In this expression, we introduce the state at the previous time, st−1, by marginalizing the
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Figure 2.2.1: Visualization of a minimal HMM. Shaded nodes in the graph correspond to
observed variables.

augmented joint probability, p(st, st−1, o1:t), to obtain

bt(st) =
∫
st−1∈S p(st, st−1, o1:t) dst−1

p(o1:t)
. (2.2.3)

Finally, we expand the numerator into a product of conditional probabilities and recover

bt(st) =
∫
st−1∈S p(ot|st, st−1, o1:t−1)p(st|st−1, o1:t−1)p(st−1|o1:t−1) dst−1

p(ot|o1:t−1) . (2.2.4)

By recognizing that ot is conditionally independent of all past observations and states
given st, and that st itself only depends upon the previous state, st−1 (i.e. exploiting the
Markov property), we can simplify Equation (2.2.4) to

bt(st) =
∫
st−1∈S p(ot|st)p(st|st−1)

bt−1︷ ︸︸ ︷
p(st−1|o1:t−1) dst−1

p(ot|o1:t−1) . (2.2.5)

Note that in this expression the denominator, p(ot|o1:t−1), is the same for all st ∈ S and
thus takes the role of a normalizing constant. Therefore, Equation (2.2.5) may alternatively
be written as

bt(st) ∝
∫
st−1∈S

p(ot|st)p(st|st−1)bt−1(st−1) dst−1. (2.2.6)

This is the Bayesian update we initially seeked to derive. Intuitively, the Bayesian update
may be understood as propagating the belief at the previous time, bt−1, through the state
dynamics, p(st|st−1), and weighting the propagated belief with the observation model,
p(ot|st). Given initial information, b0(s0) , p(s0), this rule can be applied recursively to
update the belief with new observations at every time step.
While this update rule is only valid for the minimal example of a HMM given in Figure 2.2.1,
for more complicated models, the derivation follows a similar strategy: augment and
marginalize the belief distribution, then expand the joint distribution into a product of
conditional probabilities and exploit conditional independence.

2.2.2 Approximate Bayesian Inference via Particle Filtering

The exact update rule presented in Section 2.2.1 provides a theoretical formalism to
perform Bayesian inference on HMMs. However, computing the exact update often
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remains intractable, except for a few special cases — e.g. problems with Gaussian noise
and linear dynamics admit exact inference via a Kalman filter [53, 57]. More complicated
problems require marginalization over high-dimensional state spaces or exhibit stochastic
dynamics that are not easily represented by parametric probability distributions. These
cases typically require some form of approximation to the Bayesian update.
A possible approximation to the recursive Bayesian update presented in Section 2.2.1 is to
replace the exact integral for marginalization with Monte Carlo integration. One class of
inference methods that takes this approach are the so called particle filters or sequential
Monte Carlo (SMC) methods. To date, a variety of particle filtering techniques have been
proposed that use different sampling strategies and belief representations [53, 58]. All of
these methods use a collection of sampled states, the so called particles, as a nonparametric
representation to approximate the belief.
Here, the vanilla version of a bootstrap particle filter is presented [59]. This filter uses a
weighted particle belief representation

b̂(s) , η
M∑
m=1

w(m)1(s(m) = s) (2.2.7)

where M is the total number of particles, s(m)
t ∈ S is the state associated with the mth

particle, w(m) ∈ R is the corresponding weight, η = ∑M
m=1w

(m) is a normalizing constant,
and 1(·) denotes the indicator function that takes the value 1 iff the given condition is
true:

1(C) ≡

1 if C is true,
0 otherwise.

(2.2.8)

As the number of particles, M , is increased, this belief representation can approximate
the true belief b with arbitrary accuracy, i.e. b̂(s) ≈M↑∞ b(s).
Algorithm 2 summarizes the bootstrap particle filter that approximates the Bayesian update
for the HMM presented in Section 2.2.1. A schematic visualization of this algorithm is
provided in Figure 2.2.2. Input to the algorithm are the weighted particles of the posterior
belief, Bt−1 ≡ {(s(m)

t−1, w
(m)
t−1)}m∈[M ], as well as the current observation, ot.

On an abstract level, the filter simulates the stochastic evolution of all particles — each a
hypothetical true state of the environment — and evaluates the likelihood of the observation
under each hypothesis to update the weights. As per the stages visualized in Figure 2.2.2
the algorithm proceeds as follows:

1. Transition Each particle is propagated through the state dynamics, p(st|s(m)
t ), to

propose a new state, s(m)
t , at the next time step (line 4).

2. Observation Weighting The weight of each particle is multiplied with the likeli-
hood of receiving observation ot if the true state of the environment was given by
state particle s(m)

t (line 5).

3. Resampling A new set of particles is sampled with replacement from the belief
defined by the reweighted particles, Bt, to focus the samples on relevant regions of
the state space (line 8).
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One reason for the popularity of this method is the fact that sampling from the transition
model (step 1, line 4 of Algorithm 2) does not require an explicit representation of the
transition density p(st|s(m)

t ). Instead, it only requires access to a generative model of the
state dynamics, i.e. a black box simulator of the environment.
Furthermore, note that there are several possible implementations of the resample
procedure. In the simplest case, resampling may be realized by resetting the weights, i.e.
wi = 1,∀i ∈ [M ], and sampling the state particles independently from the posterior belief
defined by the reweighted particles, B̄t. However, a successful application of this algorithm
to practical problems typically requires more sophisticated resampling strategies; particu-
larly, if only a relatively small number of particles can be simulated due to computational
constraints. Some of the considerations to make when designing a suitable resampling
strategy are discussed hereafter.
First, note that resampling is optional; mathematically, the soundness of the algorithm
does not depend on this step. In fact, for any finite number of particles resampling
poses the risk of erroneously changing the posterior belief due to the effect of sampling
variance. Intuitively, this variance arises from a loss of diversity as some particles may
not be sampled. Therefore, while occasional resampling is important to maintain a high
sampling density in important regions of the state space, it should only be performed if
necessary. There exist several heuristics to determine the need for resampling [53]. A
popular strategy is to trigger resampling if the variance of the importance weights, {w(m)

t },
exceeds a predefined threshold. Additional mitigation of this problem may be achieved
by employing an advanced low variance resampling strategy [53]. One such method is
stochastic universal sampling (SUS) [60]. Rather than sampling particles independently,
SUS chooses samples according to a sequential stochastic process that exhibits a lower
sampling variance while keeping the probability of sampling a specific particle proportional
to its weight. A thorough discussion of different low variance sampling strategies can be
found in [61, 62].
Finally, it should be noted that the state transition model, p(st|st1), is not the only
distribution that may be used to propose new samples. For example, if the measurement
model, p(ot|st), can be easily inverted it would pose a suitable proposal distribution if
instead the samples are weighted with the probability of reaching the associated state from
the posterior belief3, i.e. w(m)

t =
∫
st−1∈S p(s

(m)
t |s

(m)
t−1)b(st−1) dst−1[53]. Similarly, a different

factorization of the belief may be chosen to design alternative sampling densities, e.g.
[63]. In practice, the suitability of a given approach depends upon the computational
complexity of sampling from the corresponding proposal distribution and evaluating the
weighting density. A detailed survey of proposal distributions for particle filtering can be
found in [58].

3Note, however, that evaluating this integral is, in itself, a challenging problem that may not afford an
efficient closed form solution.
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Algorithm 2 Bootstrap particle filter corresponding to the Bayesian update presented in
Equation (2.2.6).

1: procedure BootstrapPFUpdate(Bt−1 ≡ {(s(m)
t−1, w

(m)
t−1)}m∈[M ], ot)

2: B̄t ← ∅
3: for particle index m = 1 . . .M do
4: s

(m)
t ← sample from p(st|s(m)

t−1)
5: w

(m)
t ← w

(m)
t−1p(ot|s

(m)
t )

6: B̄t ← B̄t ∪ (s(m)
t , w

(m)
t )

7: end for
8: Bt ← resample(B̄t) . may be skipped depending on the problem and belief
9: return Bt

10: end procedure

3. Resampling2. Obeservation Weighting1. Transition

b̂t−1(s) p(smt |smt−1) p(ot|smt ) resample
b̂t(s)

Figure 2.2.2: Schematic visualization of a bootstrap particle filter.
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Chapter 3

A Julia Framework for General-Sum
Differential Games

A key obstacle that impedes the application of differential games to applications charac-
terized by high-dimensional states, real-time constraints, and fast planning rates — such
as robotics — is the complexity involved with describing and solving these problems.
Here, the term complexity is explicitly used with threefold meaning: First, the algorithmic
time and space complexity of solution methods; Second, the challenges involved with
implementing these algorithms efficiently; And third, the conceptual complexity of the
interface used to describe and set up the problem. While the first two aspects are crucial
for quick solution of the problem, the latter aspect is particularly important to admit
quick iteration of different designs, e.g. to experiment with different cost structures that
encode the behavior of each player.
As discussed in Section 1.2, in terms of computational complexity recent work offers
efficient approximations to noncooperative games and several works have demonstrated
real-time performance of these algorithms in C++ implementations [1, 26, 43, 44]. However,
to the best of the author’s knowledge, only Fridovich-Keil et al. [1] provide a publicly
available implementation of their solver1 and little work has focused on providing flexible
interfaces and tools for the design phase of differential games.
This chapter describes iLQGames.jl, a software framework for designing and solving
differential games. Using the ILQG algorithm presented in Section 2.1.4, iLQGames.jl
solves fully observed instances of differential games; i.e., it solves a differential game
with known objectives to a local equilibrium and does not per se consider intention
uncertainty. The framework has been created as part of this thesis to aid the development
of algorithms for intention uncertainty in differential games discussed in the subsequent
chapters. Nonetheless, its design is focused on being a useful tool also for other areas of
multi-agent interaction research.
iLQGames.jl is written in the Julia programming language [64] and makes use of the
language’s genericity to provide a flexible interface that admits quick iteration of different
problem designs and keep up with execution times of a comparable C++ implementation.

1https://github.com/HJReachability/ilqgames
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The iLQGames.jl open-source software is publicly available at https://github.com/
lassepe/iLQGames.jl.

3.1 Architecture for Rapid Design and Solution

This section describes the key aspects of the framework that enable its flexibility and per-
formance, and make it an effective tool for differential game research. Besides introducing
the framework itself, this discussion aims to provide helpful insight for the implementation
of other solvers, tools and problem interfaces.

Rapid Design

When modeling a practical scenario of multi-agent interaction as a differential game, it may
not be immediately clear what are suitable dynamics and costs to describe the problem.
Therefore, iLQGames.jl provides a lightweight interface for describing differential games
that allows users to set up a model in few lines of code. Specifically, the user can define a
differential game by providing the differential equation governing the system dynamics, a
cost function for each player, the indices of the inputs that each player controls, and the
horizon of the game.
Listing 1 shows the code for a minimal example that illustrates this setup procedure.
In this example two players control a single unicycle with 4-dimensional state. Player-1
controls the steering angle of the unicycle and wishes to stay close to the origin. Player-2
controls the acceleration and wishes to keep the unicycle at a speed of 1 m s−1.

Listing 1 Implementation of a nonlinear two-player general-sum game in iLQGames.jl.

1 # constants : number of {states , inputs }, sampling time , horizon
2 nx , nu , ∆T, game_horizon = 4, 2, 0.1, 200
3

4 # setup a dynamical system
5 struct Unicycle <: ControlSystem {∆T,nx ,nu} end
6 dx(cs:: Unicycle , x, u, t) = SVector (x[4] cos(x[3]) ,
7 x[4] sin(x[3]) ,u[1],u[2])
8 dynamics = Unicycle ()
9

10 # player -1 wants the unicycle to stay close to the origin ,
11 # player -2 wants to keep the speed of the unicycle close to 1 m/s
12 costs = ( FunctionPlayerCost ((g,x,u,t) -> (x [1]ˆ2+ x [2]ˆ2+ u [1]ˆ2) ),
13 FunctionPlayerCost ((g,x,u,t) -> ((x[4] -1) ˆ2+u [2]ˆ2) ))
14

15 # indices of inputs that each player controls
16 player_inputs = ( SVector (1) , SVector (2))
17 # the horizon of the game
18 g = GeneralGame ( game_horizon , player_inputs , dynamics , costs)

With this light-weight problem description, the user can invoke the ILQG with given
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initial conditions and initial strategies. For the minimal example introduced above, this
step is shown in Listing 2. Most notably, even though ILQG is based on successive LQ
approximations of the game, the user does not need to hand-specify linearization of the
dynamics or quadratization of the costs. Instead, iLQGames.jl by default uses automatic
differentiation to compute these LQ approximations efficiently [65].

Listing 2 Solving a game in iLQGames.jl.

1 solver = iLQSolver (g)
2 x0 = SVector (1, 1, 0, 0.5) # initial state
3 converged , trajectory , strategies = solve(g, solver , x0)

Furthermore, being written in pure Julia — a language with strong focus on scientific
programming — iLQGames.jl can directly be used with various other packages from the
ecosystem. By this means, iLQGames.jl natively supports visualization of the state and
input trajectories of a game solution or projections of the cost landscape for a given player
to support the design process.
For the minimal example, Figure 3.1.1 shows the noncooperative equilibriums solution
computed and visualized by iLQGames.jl. This visualization shows the inputs applied by
each player as well as the path traced out by the unicycle when simulating the equilibrium
strategies computed above.
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Figure 3.1.1: Visualization of the path traced out by the unicycle at the equilibrium
solution of the game defined in Listing 1 Left: Player-1’s control signal is highlighted
in red; Player-2’s control signal is highlighted in green. Right: path traced out by the
unicycle when simulating the equilibrium strategies.
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Rapid Solution

Despite being a high-level language that offers wide-ranging abstraction, the Julia compiler
generates highly optimized code2. Most notably for the use case discussed here, this
allows iLQGames.jl to solve each LQ iterate very efficiently via a fully stack-allocated
dynamic program implemented in a readable high-level style in less than 70 lines of code.
In fact, for moderately sized games, this optimization allows iLQGames.jl to outperform
the C++ implementation presented in [1]. While it must be noted that Fridovich-Keil et
al. [1] do not make this optimization and in theory a C++ implementation can achieve
similar performance, making comparable optimizations in C++ may not be possible without
sacrificing readability.

Flexibility

Furthermore, the generic function dispatch mechanism used in Julia allows users to overload
default implementations at various levels of the solver to make problem specific optimiza-
tions. For example, users can specify a custom method to perform LQ approximations
once they have chosen a design for the problem.
Beyond that, iLQGames.jl supports exploitation of special structure of the dynamics
to speed up computation. This aspect is realized via the LinearizationStyle trait
concept. By default, a dynamical system is attributed the JacobianLinearization
trait and automatic differentiation or a user-defined linearization is used to obtain LQ
approximations of the game. However, if the dynamics are feedback linearizable, the
user can optionally specify the FeedbackLinearization trait for a model to invoke a
specialized version of the solver presented in [47]. Furthermore, linear systems are assigned
the TrivialLinearization trait and linearization is explicitly skipped. This trait concept
can be easily extended to other special types of systems and thus allows users to seamlessly
customize the solver with small local changes without the need to overload other parts of
the routine.

3.2 Benchmark Results

The performance of iLQGames.jl is evaluated by benchmarking it on three problems
against the C++ implementation presented in [1]. For additional reference, a Python
implementation of an LQ solver is benchmarked as well. The benchmark problems are (a)
a minimal LQ game (LQ), (b) a nonlinear nonquadratic collision avoidance problem (NL),
and (c) a feedback linearized version of this collision avoidance game (FBL).
Table 3.1 summarizes the benchmark results. Here, LQ-Python denotes a Python im-
plementation of the dynamic program used at the inner loop of ILQG, iLQGames-C++

refers to the implementation used in Fridovich-Keil et al. [1], and iLQGames.jl-MD and
iLQGames.jl-AD refer to iLQGames.jl utilizing manual differentiation and automatic

2This has been prominently demonstrated in [66].
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differentiation, respectively. Each game is solved over a horizon of 100 time steps on a
standard laptop. The reported run times are the average over 100 successive calls to the
respective implementation.
The Python implementation for the LQ case is multiple orders of magnitude slower than
the C++ version and iLQGames.jl. Therefore, a Python implement would not scale well to
nonlinear nonquadratic problems. In fact, preliminary tests not listed in Table 3.1 resulted
in run times of more than 30 s for the nonlinear problem. iLQGames.jl with automatic
differentiation, on the other hand, achieves moderate runtime and is sufficiently fast to
evaluate different problem designs. When utilizing manually specified LQ approximation,
as is done in the C++ version, iLQGames.jl outperforms the baseline.

Table 3.1: Benchmark results of differential game solvers. The tuple behind each benchmark
problem indicates the number of players (P) and the dimensionality of the state (D). Colored
bars indicate relative runtime and are normalized to (a) the highest runtime among all
implementations (b,c) a runtime of 100 ms to allow real-time execution at 10 Hz.

(a) LQ (2P, 2D) (b) NL (3P, 12D) (c) FBL (3P, 12D)
LQ-Python 20.800 ms n/a n/a
iLQGames-C++ 0.3490 ms 16.27 ms 13.25 ms
iLQGames.jl-MD 0.0044 ms 7.19 ms 3.98 ms
iLQGames.jl-AD n/a 63.57 ms 52.50 ms
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Chapter 4

Planning with Equilibrium
Uncertainty

This thesis’s first investigation into intention uncertainty in HRI focuses on the issue
of uncertain equilibrium selection. As an introductory example, recall the intersection
navigation problem discussed earlier in Section 1.1. For this scenario, it is intuitively clear
that the interaction admits multiple solutions. For example, one in which the cyclist passes
the motorist in the front, and another where the car passed in the back. If the car in this
example was controlled by an autonomous agent, this agent needs to understand which
solution the human road user is aiming for to safely navigate the intersection. In differential
games this multimodality of behavior manifests as a multiplicity of solutions; that is, a
situation in which the problem admits multiple Nash equilibria. This chapter proposes an
approach for tractably accommodating uncertainty arising from the presence of multiple
equilibria in game-theoretic formulations of interactions between a single autonomous
agent and one or multiple humans.
This chapter is structured as follows. First, Section 4.1 describes multimodality of behavior
in the context of differential games and highlights the associated challenges that prohibit an
a priori determination of a unique solution for interactions with humans. In view of these
challenges, Section 4.2 proposes a new game-theoretic decision model for scenarios with
equilibrium uncertainty. Section 4.3 then presents a tractable online planning approach
based on this decision model. Finally, Section 4.4 evaluates the performance of the
presented approach.

4.1 Multiplicity of Solutions in Differential Games

It is well known that noncooperative games, including differential games, can admit
multiple equilibria [37]. From the perspective of a static analysis of interaction problems
the ability to recover multiple solutions from a game formulation is a desirable property
in that it allows to discover and examine different behaviors (see, for example, [67]).
From the perspective of online planning, however, this multiplicity of solutions causes
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uncertainty about how other players will behave and hence obstructs the predictive power
of a game-theoretic planning approach.
Several methods have been proposed to eliminate Nash equilibria in an effort to obtain a
unique solution point for decision making. An intuitively straight forward criterion for
the selection of a solution point is given by the notion of payoff dominance, a condition in
which there exists a solution that exhibits strictly higher payoffs (or lower costs) for all
players than any other equilibrium of the game. Equilibria that fulfill this condition are
commonly referred to as Pareto-optimal Nash equilibria.
Unfortunately, many games do not admit a Pareto ranking of equilibria and therefore payoff
dominance alone is not a sufficient criterion to guarantee a unique solution. Moreover,
even for problems in which a Pareto ranking of equilibria can be established, there exists
substantial evidence that humans do not necessarily choose a payoff dominating strategy
[68–70]. Instead, human interaction has been demonstrated to be often characterized
by another equilibrium selection criterion: risk dominance. In risk dominance, not only
the on-equilibrium payoffs are considered but also the cost that a player incurs if others
deviate from that equilibrium [71]. Intuitively, a risk dominant equilibrium corresponds to
the most stable solution point, i.e. the solution point from which other players are least
likely to deviate due to large opportunity cost.
In practice, human interaction is likely to be characterized by a combination of both
payoff and risk dominance as equilibrium selection criteria [68] and a significant amount
of research has focused on providing theoretical models that rationalize observed selection
schemes [71–73]. However, existing results are limited to studies of finite and often even
static games and do not extend to the area of differential game theory. Furthermore,
even for such structurally less complex games, behavioral studies evidence that human
preferences for certain equilibria are significantly more complex and, e.g., may even depend
on the interaction history [68, 74].

4.2 Problem Statement and Decision Model

This section proposes a new game-theoretic planning model that explicitly models uncer-
tainty arising from multiplicity of solutions in scenarios of interaction between a single
autonomous agent and one or multiple humans. On an abstract level, instead of trying to
determine a single equilibrium for decision making a priori, in this model the planner casts
a distribution over potential solutions and reasons about the likelihood of each solution as
it observes human actions. This section describes the details of this decision model and
illustrates its key ideas based on a running example introduced hereafter.

4.2.1 Introduction of a Running Example

For the sake of clarity, a running example similar to the scenario presented in Section 1.1
is introduced. This running example is used throughout this chapter to illustrate the
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proposed decision model. While in a first step this example is only outlined abstractly, it
is further extended as the problem statement and decision model is presented hereafter.
In this example, consider N = 3 agents — a robot and two human players — that navigate
in a shared environment with no obstacles. This interaction problem may be envisioned as
schematically shown in Figure 4.2.1.
The behavior of each agent is characterized by the following objectives:

1. Reach a preset goal state xg,i within the horizon T .

2. Avoid collisions with other players.

3. Minimize control effort.

4. Prefer low velocities.

As some of the aspects of this behavior (crucially collision avoidance) depend implicitly or
explicitly on the joint state of at least two agents, this problem requires each player to
reason about the decisions of other players.

3

1

2

Figure 4.2.1: Schematic visualization of the running example. Each road user wishes
to reach their goal on the other side of the intersection. The autonomous agent in this
example controls the blue car starting on the left.

4.2.2 Game Formulation of a Human-Robot Interaction Prob-
lem

The interaction problem of a robot with N − 1 humans is cast as an N-player general-sum
differential game as intruded in Section 2.1.1. Recall that in this formulation the evolution

27



of the joint state, x, of the environment is characterized by the dynamics,

ẋ = f(t, x, u1:N) (4.2.1)

the objectives are given by time-separable costs,

Ji (u1:N(·)) ,
∫ T

0
gi (t, x(t), u1:N(t)) dt,∀i ∈ [N ] , (4.2.2)

and each player seeks to find feedback strategy,

ui(t) , γi(t, x(t)) , (4.2.3)

that minimizes their respective cost function. Furthermore, this work uses the convention
that the autonomous agent corresponds to index 1, i.e. the robot is in control of input u1
and seeks to minimize cost J1.
Using this formulation, the decision model makes the following assumption. The decision
process of human agents is modeled to attain an approximate local Nash equilibrium (c.f.
Section 2.1.4) of the above game. By this choice of equilibrium concept the decision model
allows humans to play suboptimal. While at first glance this may appear like a poor
model for human decision making, it is argued that human players may not always be
able to identify a global equilibrium; that is, if the interaction problem is sufficiently
complex, human players are likely to utilize some form of approximation to tractably
find an optimized strategy. Furthermore, it should be noted that global equilibria are a
subset of local equilibria. Hence, when considering the set of local equilibria to predict
human strategies, globally optimal play is implicitly contemplated as well. Conversely,
if only global equilibria were allowed, the decision model would be less expressive and
the autonomous agent using the proposed approach would not be able to discover and
appropriately respond to suboptimal behavior.

Running Example. The running example introduced in Section 4.2.1 can be cast as an
N -player general-sum differential game by specifying system dynamics and costs for all
players.
Defining the joint state to be x = [x1;x2;x3], let the dynamics of each agent be modeled
as those of a 4D unicycle

ẋi =
[
ṗx,i; ṗy,i; θ̇i; v̇i

]
=
[
vi cos θi; vi sin θi;ωi; ai

]
. (4.2.4)

Here, agent i has position pi , (px,i, py,i), orientation θi and velocity vi and is in control of
the longitudinal acceleration ai as well as the steering rate ωi of their respective subsystems.
For each player a nonquadratic cost function is formulated to encode the preferences given
in Section 4.2.1 as the sum of the following:

goal: cgoal,i1(t > T − tgoal)‖pi − pgoal,i‖2 (4.2.5)
proximity: cprox,i1(‖pi − pj‖ < dprox)(dprox − ‖pi − pj‖)2 (4.2.6)

input: cinput,iu
T
i ui (4.2.7)

velocity: cvel,iv
2
i (4.2.8)
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Here, cgoal,i, cprox,i, cinput,i, andcvel,i are parameters that weight the importance of the re-
spective components of the cost for player i, and 1(·) denotes the indicator function as
defined in Equation (2.2.8). The distance of player i to the goal position pgoal,i is penalized
for the last tgoal time units, and dprox denotes the distance threshold at which proximity
cost is activated.
By solving this problem to an approximate local Nash equilibrium of the game, the
decision model encodes shared responsibility for collision avoidance between all players.
Furthermore, as will be demonstrated later in this chapter, this example allows multiple
equilibria due to the structure of the cost. For each pairwise encounter of two players the
involved agents need to decide on which side they pass each other. While for some cases
this conflict may be trivially resolved because both players have a strong preference for the
same solution, other scenarios require some form of negotiation to resolve the ambiguity.

4.2.3 Strategy Alignment Problem

The discussion in Section 4.1 emphasizes that an agent using a game-theoretic planning
model may face the challenge of selecting among multiple solutions and the running
example introduced above provides an interpretation of this issue in a real world example.
To address this issue, the agent is tasked solve the strategy alignment problem proposed
hereafter.
First, it is assumed that there exists a local equilibrium solution of the game that determines
the behavior of all humans. This agreement between humans can be thought of as the
innate ability of humans to communicate through subtle cues that are difficult for robots to
pick up on. However, humans can not be expected to be able to communicate with robots
with similar clarity. Therefore, it is the robot’s task to infer the equilibrium negotiated
by the humans and align to their preferred local solution. By this means, the strategy
alignment problem preserves local symmetry between players but allows humans to take a
leading role in globally selecting a preferred equilibrium.
In accordance with these assumptions, mathematically, the strategy alignment problem
is modeled as an inference problem (c.f. Section 2.2) in which the local equilibrium at
which human players operate is a latent state, denoted k, that the agent can not observe
directly. Instead, the agent receives observations of only the physical state, x. Using these
observations, the agent can maintain a belief over the latent equilibrium state, i.e.

bt(kt) , p(kt|x1:t, u1,1:t). (4.2.9)

Note that in contrast to the formulation in Section 2.2.1, due to the structure of the
problem the likelihood of the latent state, kt, at time t depends not only upon past
observations, x1:t, but also on the decision of the agent, i.e. its inputs, u1,1:t, to the system
up to time t.
A dynamic decision network (DDN), i.e. a DBN with a decision node for the agent’s
action, that depicts the conditional independence assumptions for the equilibrium inference
problem is shown in Figure 4.2.2. In accordance with the problem formulation, the agent’s
decision at time step t+ 1, u1,t+1, is informed by past observations of the physical state,
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x1:t, while the equilibrium, kt, generating the human behavior remains unobserved. At
every time step, the next equilibrium, kt+1, depends only upon the previous equilibrium,
kt, and the physical state, xt. This dependence models the fact that human players update
their strategies to account for the decision of the autonomous agent. Furthermore, x̂t+1
represents the predicted physical state that would be attained if humans behaved exactly
according to the equilibrium strategy corresponding to kt+1 and there was no model
mismatch in the dynamics. Finally, to account for deviations from the exact equilibrium
strategy, the true physical state, xt+1, is modeled as a probabilistic emission of the nominal
prediction, x̂t+1.

u1,t: the agent’s input
kt: latent equilibrium
x̂t: predicted physical state
xt: true physical state
t: time index

u1,t

kt−1 kt

x̂t−1 x̂t

xt−1 xt

Figure 4.2.2: DDN used to model the equilibrium inference problem.

Running Example. By solving the strategy alignment problem in the running example
introduced in Section 4.2.1, the robot allows humans to choose their preferred local solution.
At the same time, since the agent only considers noncooperative equilibrium strategies,
it maintains shared responsibility for collision avoidance. Furthermore, by inferring the
equilibrium from observations of the human actions over time, the agent avoids making a
priori assumptions about the equilibrium selection preferences of humans, e.g. ruling out
payoff dominated or risk dominated solutions. This is particularly important as Section 4.1
highlights the challenges of modeling such preferences. For example, when approaching
a human that comes straight at the robot, from a robots perspective it is reasonable
to model humans as having symmetric preferences for passing on either side, if neither
solution is risk or payoff dominant. However, humans may have cultural or otherwise
difficult-to-model preferences for a specific solution.

4.3 Inference-Based Strategy Alignment

This section presents a general framework for tractable solution of the strategy alignment
problem defined in Section 4.2. This approach is developed from the perspective of a fully
observed differential game and uses ILQG to approximate local Nash equilibria of the
game. By seeding the ILQG method with numerous samples from a prior distribution over
initial strategy profiles, the method induces a distribution of local equilibria. At every
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time step, the belief over latent equilibria is then updated with observations of the physical
state using a particle filtering technique. Using this a-posteriori belief, the agent’s strategy
is aligned by extracting the most likely equilibrium.

4.3.1 Finding Local Equilibria

The strategy alignment approach presented in this section is, for the most part, agnostic to
the solver used to compute local equilibria. There are two requirements for a solver to be
used in this new framework. First, it must admit a form of persistent state that encodes
a specific equilibrium, i.e. a representation of the latent equilibrium state, k. Second,
because inference must be run at near real-time planning rates, the solver needs to be
sufficiently fast to allow solving the game for multiple equilibria at every planning step.
Regarding the first point of latent equilibrium representation there are multiple choices of
suitable local game solution algorithms. Local solution techniques typically admit a latent
state representation via the initial seeding of the solver [1, 26, 45]. By seeding the solver
with a given initial strategy profile, the equilibrium whose basin of attraction contains
this seeding is recovered. Conversely, any strategy profile in the basin of attraction of a
specific equilibrium, k, is a permissible representation for the latter.
From the perspective of runtime, however, only few solution techniques pose a suitable
choice. Cleac’h et al. [45] report run times for their local solver in the order of multiple
seconds even for a relatively small problems with 3 players. Spica et al. [26] and related
approaches [43, 44] report significantly faster planning times ranging from 50 ms for a
2-player example to about 400 ms for a 6-player example. Finally, ILQG as implemented
by Fridovich-Keil et al. [1] achieves planning times below 17 ms for a 3-player example.
In view of these results, this work uses ILQG for solution of the local equilibrium problem.
A thoroughly optimized Julia implementation of this solver is made to further improve the
runtime (c.f. Chapter 3). An additional advantage of ILQG is that it synthesizes feedback
strategies for each player while Spica et al. [26] only generate open-loop controls. Thus,
ILQG can achieve a more fine-grained prediction beyond the resolution of the replanning
rate by invoking the local feedback laws between updates of the solution.

4.3.2 Inferring the Equilibrium

Since the robot does not know the equilibrium that humans have chosen, it can only
attempt to infer how likely each equilibrium is. As the decision model assumes that the
agent is able to measure the state perfectly, in a perfect mathematical abstraction, there
would be a unique trajectory for each equilibrium, and the robot could eliminate solution
hypotheses immediately if they did not match the observation exactly. However, in reality,
there are multiple sources of uncertainty that have to be considered.
First, real human behavior can not be expected to exactly match an equilibrium strategy.
Instead, they follow trajectories that are difficult to model perfectly but may approximately
match the equilibrium. Second, the model used for the dynamics of the environment and
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the costs for each player will always be an abstraction of the real-world dynamics and
preferences of humans. Finally, there is some numerical noise in the game solution process.
Thus, even if the model of dynamics and costs matched the real world perfectly, strategy
profiles attained for a specific equilibrium with a local algorithm like ILQG may deviate
within the tolerance of the convergence criterion.
Because of these sources of this uncertainty, Bayesian inference is used to maintain the
equilibrium belief formulated in Equation (4.2.9).

Challenges for Exact Bayesian Inference

By exploiting the conditional independence assumption made by the strategy alignment
model (c.f. Figure 4.2.2) the exact Bayesian update rule for Equation (4.2.9) can be
derived. Following the procedure discussed in Section 2.2.1, the update can be written as

bt(kt) ∝
∫
kt−1∈K

∫
x̂t∈X

p(xt|x̂t)p(kt, x̂t|u1,t, kt−1, xt−1)bt−1(kt−1) dx̂t dkt−1. (4.3.1)

Here, X is the space of physical states, x, and K is the latent space of equilibria, k.
Unfortunately, evaluating this update rule is computationally challenging for multiple
reasons. First, enumerating all equilibria in the equilibrium space, K, is generally in-
tractable [41]. Second, an equilibrium in K is a complicated concept for which it is
hard to find compact representation. In many cases, K can be expected to contain a
finite number of equilibria. However, these equilibria change, arise, and vanish over time,
depending on the physical state, x. As a result, while K typically is intrinsically low-
dimensional and countably finite, the inability to enumerate equilibria a priori necessitates
an indirect representation, e.g. here via a strategy profile in its basin of attraction (c.f.
Section 4.3.1). Unfortunately, this representation, i.e. the space of joint strategies, is
extrinsically high-dimensional and thus exact integration remains intractable.

Tractable Inference via Particle Filtering

While enumerating all equilibria in the equilibrium space K can not be done efficiently,
one can recover a subset of K by sampling initial strategy profiles and solving the game at
these points. Using this idea, a particle filtering technique is proposed to approximate the
Bayesian update of the equilibrium belief given in Equation (4.3.1). This particle filtering
technique is an adaptation of the algorithm presented in Section 2.2.2 to account for the
structure of the DDN given in Figure 4.2.2.
Algorithm 3 summarizes the procedure of generating an initial belief for the particle filter.
The algorithm proceeds in the following steps:

1. Sample Strategy Profiles First, K seed strategies are randomly sampled from a
problem-specific distribution, Pγ (line 2 of Algorithm 3).

2. Solve Game Instances The game is solved at each of the sampled seeds to recover
K equilibria. Each of the resulting equilibrium strategy profiles is referred to as
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a particle which has a corresponding weight that is initially set to 1 (line 3 of
Algorithm 3).

3. Combine Duplicates Some of the initial strategy profiles sampled from Pγ may
result in the same solution. Thus, the weights for particles that represent the
same equilibrium, as determined by measuring the distance between the equilibrium
trajectories, are combined (line 4 of Algorithm 3).

In this algorithm, the seed distribution, Pγ, is necessarily dependent on the specific state
space and dynamics of the problem. However, as will be demonstrated in Section 4.4.2,
it was not difficult to find suitable distributions for the experiments conducted here. In
general, the seed distribution must cover the strategy space in a manner that allows
to recover the relevant equilibria that human players may consider. Equilibria that are
not attained by the solver for any sampled seed can not be inferred. Consequently, the
performance of the proposed particle filtering technique depends on the ability to specify
a suitable seed distribution.

Algorithm 3 Generation of an initial particle belief for equilibrium inference from a seed
distribution Pγ.

1: procedure GenerateInitialBelief(Pγ)
2: {γ̄(k)

0 }k∈[K] ← sample K strategy profiles from Pγ
3: B̄0 ← {(γ(k)

0 ≡ SolveGame(x0, γ̄
(k)
0 ), w(k)

0 ≡ 1)}k∈[K]
4: B0 ← CombineDuplicates(B̄0)
5: return B0
6: end procedure

Starting from the initial belief, the belief is updated using the particle filtering technique
outlined in Algorithm 4. This algorithm proceeds in the following steps:

1. Transition The strategy profile, γ(k)
t , associated with particle k is updated by re-

solving the game from the last known physical state, xt−1. With this updated strategy
profile, each particle makes a prediction of the physical state, x̂(k), by applying the
human strategies corresponding to equilibrium k as well as the agent’s input, u1,t.
From the perspective of a vanilla particle filter the process of re-solving the game
and predicting the state constitutes a generative model that implicitly defines the
transition model p(kt, x̂t|u1,t, kt−1, xt−1) in Equation (4.3.1) . These steps correspond
to line 4 and 5 of Algorithm 4.

2. Observation Weighting The weight for each particle is then updated by evaluating
the probability density p(xt|x̂(k)) which captures potential deviations of humans from
the exact strategy corresponding to equilibrium k (line 6 of Algorithm 4).

3. Combine Duplicates Following the logic discussed above for Algorithm 3, the
weights for particles that represent the same equilibrium are combined (line 9 of
Algorithm 4).
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In this algorithm, the call to SolveGame corresponds to an invocation of ILQG.
It should be noted that the deviation model, p(xt|x̂(k)), is somewhat arbitrary because it is
meant to capture the three difficult-to-model sources of uncertainty mentioned above. In
this work, a Gaussian distribution is used, as is commonly done in cases where uncertainty is
difficult to model, but is expected to be unimodal. It would also be possible to incorporate
domain knowledge into the algorithm by using a more complex distribution.

Algorithm 4 Particle filter for equilibrium inference.

1: procedure UpdateEQBelief(Bt−1 ≡ {(γ(k)
t−1, w

(k)
t−1)}k∈[K], xt−1, xt, u1,t)

2: B̄t ← ∅
3: for particle index k = 1 . . . K do
4: γ

(k)
t ← SolveGame

(
xt−1, γ

(k)
t−1

)
5: x̂

(k)
t ← xt−1 +

∫ t
t−1 f

(
τ, x(τ), u1,t, γ

(k)
−1 (x(τ))

)
dτ

6: w(k) ← w(k)p(x(t)|x̂(k))
7: B̄t ← B̄t ∪ (γ(k)

t , w
(k)
t )

8: end for
9: Bt ← CombineDuplicates(B̄t)

10: return Bt
11: end procedure

Running Example. Figure 4.3.1 schematically shows the idea of a particle based belief
representation for the running example introduced in Section 4.2. Since duplicate particles
are combined, each particle in the belief maintained by the autonomous agent (Player-1,
blue) corresponds to a different equilibrium, i.e. a set of feedback strategies that the
players may invoke to reach their goal while avoiding collisions with others. Here, the
weight of each particle is visualized via its size and corresponds to its estimated likelihood.
This likelihood estimate may change over time as a result of two different mechanisms in
the belief update: first, via observation weighting of physical state measurements, and
second, if two particles transition to the same equilibrium and hence their weights are
combined. In the running example, weight changes of the latter kind can occur whenever
agents have fully passed each other on the way to their respective goals. Here, the reason
for merging is the fact that for the later part of the maneuver, i.e. when agents are close
to their goal, each player’s optimal plan does not depend upon the decisions of others
and the problem is essentially reduced to three decoupled single-player optimal control
problems.

4.3.3 Globally Aligned Closed-Loop Planning

After the inference algorithm has weighted each of the sampled solutions, the robot must
decide which feedback strategy to apply. There are many possible candidates for the
best strategy. If the weights are appropriately normalized, then they define a probability
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Figure 4.3.1: Schematic visualization of a particle base belief representation for the running
example introduced in Section 4.2.

distribution over the sampled equilibrium particles, i.e.

P (k) = w(k)∑
k∈[K] w(k) . (4.3.2)

This structure is analogous to a belief in a POMDP formulation [54, 75] where the human
player’s choice of equilibrium is the latent part of the state. Thus, solution concepts used
for POMDPs are applicable here.
It is well known that to find the optimal solution of a POMDP, the agent must reason
about the information they will receive in the future. However, this is computationally
intractable in general [76], so approximations are usually employed. Commonly used
approximations include generalized QMDP [4, 77] and planning assuming the most likely
or mean latent state [4]. In the present setting, QMDP is difficult to apply because it
is difficult to evaluate every possible control input against all of the strategies the other
players might take. The mean latent state in this setting corresponds to the weighted
average of several equilibrium strategies, which is usually not a strategy that a human
would take. Maximum likelihood approximations involve little computational effort and
previous work has demonstrated reasonable performance of such approaches in scenarios
with moderate uncertainty [4, 78].
For these reasons, here, the maximum a posteriori (MAP) estimation of the equilibrium
belief is used to make control decisions. Algorithm 5 summarizes the procedure for closed-
loop planning with strategy alignment to the MAP equilibrium. Starting from the initial
belief generated via the seed distribution Pγ, at every time step the agent applies the
control specified by its strategy in the most likely equilibrium. Subsequently, the agent
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observes the resulting physical state which also depends upon the actions of the other
players that follow an unobserved equilibrium of the game. Finally, the agent performs a
belief update via the procedure outlined in Algorithm 4 to infer which equilibrium is likely
to have generated the observed behavior. This updated belief is used to inform the next
decision.

Algorithm 5 MAP Aligned Control
1: B0 ← GenerateInitialBelief(Pγ)
2: for each time step t do
3: kMAP ← argmax

k∈[K]

{
w

(k)
t−1 for particle index k of Bt−1

}
4: u1,t ← γ

(kMAP)
1 (x(t), t)

5: xt ← apply u1,t and receive observation xt
6: Bt ← UpdateEQBelief(Bt−1, xt−1, xt, u1,t)
7: end for

4.4 Evaluation

This section analyzes the performance of inference-based strategy alignment by comparing
the proposed equilibrium inference to a game-theoretic baseline using [1] that does not
employ inference. The performance of both approaches is evaluated in simulations of the
running example introduced in Section 4.2.
This section is structured as follows. Section 4.4.1 presents the implementation details for
this evaluation and gives an overview over the parameters used throughout the simulated
experiments. Thereafter, three types of evaluation experiments are conducted for which
the results are presented and discussed in the following order. Section 4.4.2 demonstrates
the multiplicity of solutions for the evaluation problem by performing a Monte-Carlo study
of local equilibria. Section 4.4.3 evaluates the prediction performance of the equilibrium
inference approach by isolating it from the control part in a purely observing setting.
Finally, Section 4.4.4 studies the interaction dynamics and performance of the strategy
alignment approach in a closed-loop planning scenario.
Note that each of these sections contains a discussion of the respective results, so that find-
ings from earlier, conceptually more intuitive evaluations can assist in the interpretations
of more complex experiments towards the end of this chapter. A summary of the main
results as well a discussion of limitations and potential next steps is given in Section 4.4.5.

4.4.1 Experiment Details and Parameters

Evaluation Problems

Throughout this section, evaluations are performed on variants of the running example
introduced in Section 4.2 with 2, 3 and 5 players, respectively. For each benchmark problem

36



a game formulation as defined by the tuple of dynamics (Equation (4.2.4)) and costs
(Equations (4.2.5) to (4.2.8)) is implemented in the iLQGames.jl framework. Table 4.1
shows the weights and parameters for the cost terms given in Equations (4.2.5) to (4.2.8)
as well as the time discretization and game horizon used for these experiments.

Table 4.1: Game parameters.

Parameter Symbol Value
Goal penalty start time tgoal 9.9 s
Proximity cost activation distance dprox 1.2 m
Goal cost weight cgoal 300
Proximity cost weight cprox 50
Input cost weight cinput 10
Velocity cost weight cvel 30
Time step ∆t 0.1 s
Game horizon T 10 s

Inference Algorithm

The algorithms for equilibrium inference and strategy alignment are implemented in
the Julia programming language. These implementations closely follow the pseudo code
representations in Algorithms 3 to 5. The equilibrium inference algorithm is implemented
using ParticleFilters.jl1 which is adapted to accommodate the CombineDuplicates
procedure. Within this framework, the step of computing the game solution for each
particle transition is realized via the Julia implementation of ILQG presented in Chapter 3.
To generate initial strategy profiles for this class of benchmark problems, open-loop
strategies of the form

γi,0(t, x) = [βωcos(t/Tπ); βacos(t/Tπ)], (4.4.1)

with turn rate parameter, βω, and acceleration parameter, βa, are used for all players. For
each parameter combination, this initial strategy generates a different S-shaped path for
the player. The seed distribution, Pγ, for the evaluation problems is defined as the joint
distribution over the N -tuple of parameterized open-loop strategies where the parameters
βω and βa are sampled independently from uniform distributions, U(βω,min, βω,max) and
U(βa,min, βa,max), respectively. Table 4.2 shows the parameters of the seed distribution, Pγ ,
used for the experiments conducted here.

1https://github.com/JuliaPOMDP/ParticleFilters.jl
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Table 4.2: Seed distribution parameters.

Parameter Symbol Value
Min acceleration βa,min 1.5 m s−2

Max acceleration βa,max 2.5 m s−2

Min turn rate βω,min −0.2 rad s−1

Max turn rate βω,max 0.2 rad s−1

Finally, within the equilibrium inference algorithm the deviation density, p(xt|x̂(k)), is
modeled as a multivariate Gaussian, N (x̂(k), εOI). The observation noise parameter, εO,
for this distribution as well as the number of particles used for each problem are given in
Table 4.3.

Table 4.3: Particle filter parameters.

Parameter Symbol Value
Number of particles (3-player) K3 50
Number of particles (5-player) K5 150
Observation noise εO 0.1

4.4.2 Monte Carlo Study of Local Equilibria

This section analyzes the qualitatively different local equilibria that exist in a multi-player
navigation problem. For each of the experiments presented in this section, first, a collection
of equilibria is generated by solving the multi-player game for 100 random samples from the
seed distribution Pγ . Subsequently, spatial clustering is performed on the state trajectories
traced out for each sample to discern the different types of encounter geometries. Here,
clustering is performed using the DBSCAN algorithm [79] to avoid manual specification of
the number of clusters [80].

Minimal Example: 2-Player Scenario

For the sake of clarity, first, a 2-player version of the navigation problem is considered.
Figure 4.4.1 shows the two clusters of solutions that can be found in this setting as well as
the initial strategy profiles sampled from Pγ that generate these clusters. Here, Player-1’s
trajectory is shown in blue, while Player-2’s trajectory is shown in red. Additionally,
the clusters are sorted from left to right in ascending order of cost incurred by Player-1.
To give an intuition for time, for each player trajectory the initial positions as well the
position closest to the other player are highlighted with circular marks.
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This simple example shows that the game allows for two qualitatively different equilibria. In
the equilibrium corresponding to the first cluster Player-1 (blue) accelerates while Player-2
(red) slowly approaches the conflict area to let the other player pass first. Additionally,
both players slightly deviate from the straight path to their respective goal to make room
for the other player as they share responsibility for collision avoidance. In the equilibrium
corresponding to the second cluster the players take opposite roles. The examination of the
cost for each cluster reveals that the player passing the conflict area first incurs a slightly
lower cost than the player who is forced to decelerate and wait at the intersection. Thus,
it is clear that neither equilibrium is payoff dominant. Rather, each cluster corresponds to
different plausible mode of interaction.
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Figure 4.4.1: (a,b) Clustered local equilibria for a 2-player navigation problem. Initial
positions and positions closest to the other player are highlighted, respectively, with
rectangular and circular marks. (a) blue goes first; (b) red goes first. (c) Initial strategy
samples from Pγ.

This simple example demonstrates that even in the minimally complex case of a 2-player
encounter a unique dominating strategy profile may not be found and thus some form of
strategy alignment is required. In order to safely navigate the intersection, each agent
must understand which equilibrium the other player is aiming for. If players fail to agree
on an equilibrium, multiple players may incur a high cost, e.g. if two players accelerate to
pass the conflict area first.

Running Example: 3-Player Scenario

A third player is added to the navigation problem to recover the original running example
as introduced in Section 4.2. The clustered local equilibria for this scenario are depicted
in Figure 4.4.2. Here, the third player’s trajectories are shown in purple. Again, clusters
are ordered from left to right and top to bottom in ascending order of cost incurred by
Player-1 (blue). The clustering reveals a total number of eight qualitatively different local
equilibria. The two solutions with the lowest cost for all players — shown in the first
two sub-figures of Figure 4.4.2 — correspond to a clockwise or counter-clockwise circular
motion in which all players equally deviate from their straight path to the goal while
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maintaining almost constant speed. The remaining solutions can be understood as all
possible sequential orders in which players can pass the conflict zone. That is, in each of
these cases one player accelerates on the straight path to its goal to pass the conflict zone
first. Another player follows with moderate speed and slightly deviates from its straight
path to the goal to avoid a collision. The last player approaches the conflict zone at low
speed and waits for the others to pass before continuing on a straight path to its goal.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Cluster 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Cluster 2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) Cluster 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(d) Cluster 4

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(e) Cluster 5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(f) Cluster 6

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(g) Cluster 7

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(h) Cluster 8

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(i) Initial Strategies

Figure 4.4.2: (a-h) Clustered local equilibria for a 3-player navigation problem. Initial
positions and positions at half the simulation horizon highlighted, respectively, with
rectangular and circular markers. (i) Initial strategy samples from Pγ.

The examination of qualitatively different approximate local Nash equilibria for the 3-
player navigation scenario shows that the problem immediately becomes more complex,
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merely through the number of combinations in which the players may pass the conflict
zone. Therefore, it is clear that with increasing number of players hand-specifying suitable
behaviors for all possible cases is undesirable and thus a more principled approach should
be taken.

4.4.3 Prediction Performance

In this section the performance of the proposed inference method is examined independently
from closed-loop interaction dynamics. For this purpose, again, the running example of a
3-player navigation problem is considered. However, in this experiment the agent does not
control any inputs to the system but rather observes the interaction of three players as
they follow a set of strategies corresponding to a local equilibrium. At every time step,
the agent receives an observation of the physical state x. With this information, it is the
agent’s task to accurately predict the trajectories of all players over the remaining game
horizon.
The equilibrium inference method proposed in Section 4.3.2 is compared to a baseline that
uses ILQG but does not actively reason about different solutions. Instead, it uses a fixed
local equilibrium to predict the trajectories of all players. For the baseline, the seed that
generates the local equilibrium is sampled from the same seed distribution, Pγ , as used by
the equilibrium inference approach. Note that while the baseline does not actively reason
about the equilibrium that the players operate at, it still benefits from state-feedback as it
re-solves the game for the remaining game horizon after every observation of the physical
state. Each method is evaluated in 200 simulations of the 3-player running example where
for each run the simulated human behavior is generated by sampling a seed from Pγ.
Figure 4.4.3a shows the mean squared prediction error E [||p− p̂||2] of the position p =
[px,1; py,1; px,2; py,2; px,3; py,3] over the moving prediction horizon for the inference method
and the baseline. Note that in this evaluation, prediction errors are grouped by the time
offset from the respective current simulation time; i.e. the data point at time tp for a
specific method corresponds the average over all predictions made by this method looking
tp time units into the future. Since the agent receives an exact observation of the physical
state at each time step and furthermore knows the goal locations xg,i of all players, both
methods achieve a low prediction error at the beginning and the end of the prediction
horizon. However, in the intermediate range, which is crucial to predict how conflicts are
resolved, the inference approach is able to significantly reduce the prediction error.
To provide further insight into the prediction performance, Figure 4.4.3a shows the
evolution of the mean squared prediction error over the simulation horizon instead of the
prediction horizon. Here, in contrast to the previous evaluation, each point on the graph
corresponds to the averaged prediction error for all predictions made at a specific time
step of the simulation. In this evaluation, the prediction error for both approaches is
initially high. However, as the interaction of players is observed over time the equilibrium
inference approach is able to quickly reduce the prediction error and after 1.5 s predicts
the player trajectories almost perfectly for the rest of the game. The baseline, on the other
hand, maintains a high average prediction error until 4 s. At around half the simulation
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horizon the ambiguity of multiple equilibria is trivially resolved by the fact that all initial
strategies now converge to the same equilibrium which corresponds to the solution of three
fully decoupled single-player optimal control problems.

(a) Error statistics over prediction horizon.
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(b) Error statistics over simulation horizon.
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Figure 4.4.3: Mean squared prediction error for the 3-player running example under equi-
librium uncertainty. InferEQ: prediction with equilibrium inference. Baseline: prediction
when equilibrium uncertainty is ignored. Ribbons indicate the standard error of the mean.
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4.4.4 Closed-Loop Interaction

The performance of the full inference and planning framework is tested in a closed-loop
interaction scenario. In this experiment, the behavior for all human players is generated by
solving the game for a randomly selected equilibrium. All players generate their respective
strategies over the remaining game horizon, i.e. replanning after every time step to close
the loop.
The MAP aligned planner is compared to a baseline using the planning approach of
Fridovich-Keil et al. [1]. As for the prediction experiments, the baseline does not actively
reason about different solutions but uses a fixed local equilibrium to make control decision.
Again, this local equilibrium is initially sampled from the seed distribution, Pγ, and
updated over the remaining game horizon by re-solving the game after each observation of
the physical state x.

3-Player Scenario

Figure 4.4.4 shows the distribution of costs incurred by each player over 200 simulations of
the 3-player scenario for both planning approaches. From the cost distribution it is clear
that the MAP aligned planner performs significantly better than the non-adaptive baseline.
By actively aligning to the equilibrium chosen by the human players, the robot not only
reduces its own cost but also the cost the remaining players. For the robot (Player-1),
the gap in performance results from the improved ability to compute efficient plans as
the robot has a better understanding of how humans will react. Conversely, from the
perspective of the human players, the strategy aligned robot matches their prediction more
closely and thus renders their own plans more efficient.
Further insight is gained by analyzing the qualitative difference between both methods in
closed-loop planning. For this purpose, player trajectories for each approach are analyzed
in simulations of the same human behavior. In each simulation, the random seed generating
the human behavior is fixed to the same value for both methods. Note that fixing the
random seed only fixes the strategy, but not necessarily the trajectory. That is, humans
will take the same action when presented with the same physical state x at time t but
their actual decision depends implicitly upon the actions of the robot as these in turn
affect the state.
For the baseline, the analysis reveals two qualitatively different cases which are reflected in
the bimodality of the cost distributions in Figure 4.4.4 (right). In the first case, the robot
using the baseline controller initially samples the same equilibrium as the human and thus
is trivially aligned. Hence, the interaction plays out as planned by all players and the costs
incurred by each player in closed-loop interaction closely matches the cost as predicted
by their plan. These scenarios compose the low-cost mode of the player cost distribution
for the baseline. In the second, more critical case, the robot does not initially sample
the same equilibrium as the human players and hence invokes a misaligned strategy. An
example that demonstrates the effects of misalignment is depicted Figure 4.4.5. Here, the
current player positions are highlighted with circular marks. The robot (Player-1, blue)
starts on the left. The robot’s predictions, as generated by the baseline planner, are shown
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Figure 4.4.4: Distribution of costs incurred by each player in the 3-player running example.
(a) InferEQ: Player-1 uses strategy alignment. (b) Baseline: Player-1 ignores equilibrium
uncertainty.

as black solid lines while the human plans are shown as red dashed lines. Initially, the
robot’s prediction matches the plan of the human coming from the top (purple, Player-3)
but is misaligned with respect to the strategy of the player coming from the bottom (red,
Player-2). Comparing these strategies to the Monte Carlo study in Section 4.4.2, the
robot’s strategy corresponds to Cluster 7 (c.f. Figure 4.4.2 (g)) while the human behavior
is generated from Cluster 1 (c.f. Figure 4.4.2 (a)). Due to this misalignment, the robot
predicts that Player-2 will go first and thus approaches the conflict area to let the human
pass. Player-2 in turn adapts to the speed of the robot and plans to pass the conflict area
at the same speed as the robot in a clockwise circular motion. Consequently, both players
slowly inch forward expecting the other to accelerate (Figure 4.4.5 (a-d)). This mutual
deadlock continues until t = 6 s, where the goal cost now dominates the proximity cost and
both players accelerate to avoid the penalty for not reaching their respective goal position
in time. Due to the close proximity and the large acceleration needed to reach the goal in
time, Player-1 and Player-2 incur a high cost of 1169 and 1094 cost units, respectively.
Note that in this example Player-3 remains mostly unaffected by the misalignment and
only incurs a cost of 670.
For the MAP aligned planner, the variance in performance is significantly lower. Again,
there exists a case where the robot is trivially aligned, i.e. if the human chooses the most
likely equilibrium from the prior equilibrium distribution induced by Pγ. In all other
cases the robot has to actively infer the equilibrium from the observed human actions and
the incurred cost depends on the time it takes to recover the correct equilibrium. As an
example of this inference process, Figure 4.4.6 visualizes the MAP planning procedure for
the same random seed (i.e. the same human behavior) as discussed above for the baseline
(Figure 4.4.5). Again, the robot starts at the left, the robot’s plan (the MAP estimate
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of the equilibrium belief) is shown as black solid lines and the human plans are shown
as red dashed lines. Additionally, blue lines visualize the equilibrium trajectories of all
other particles in the belief where higher opacity corresponds to a higher particle weight.
A histogram of the weight distribution over particle indices for the posterior belief is
provided for each visualized time step. The example shows that initially the robot’s MAP
estimate corresponds to Cluster 2 (c.f. Figure 4.4.2 (b)) and hence the robot’s strategy is
not aligned with the human equilibrium (Cluster 1, Figure 4.4.2 (a)). However, already
at t = 2 s the belief assigns 80 % of the probability mass to the correct equilibrium and
the robot invokes the aligned strategy. While at this time step there are still three other
equilibria in the belief that have a significant weight, at t = 4 s the belief is fully converged.
Due to the alignment of the robot to the human equilibrium, no player is forced to deviate
from their locally optimal equilibrium strategy and all players reach their goal efficiently,
incurring a cost of [c1; c2; c3] = [648; 638; 645], where ci is the cost of player i.

Remarks on Runtime The 3-player version of the strategy alignment problem is solved
at real-time planning rates. The runtime of the strategy alignment approach is dominated
by the time it takes to update the game solution for each particle. Solving for a single
approximate local Nash equilibrium from scratch takes on average 7.5 ms. However, if the
game solver is warm-started with the solution of the previous time step, a single particle
update can be computed with an average runtime of just 1.5 ms. Accordingly, an update
of all 50 particles in the belief is done in less than 80 ms. Therefore, after having initialized
all particles at the first time step, the MAP aligned planner runs in real-time when used
with a re-planning scheme that utilizes warm-starting.
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Figure 4.4.5: Example of misalignment in closed-loop planning when using the baseline
controller. The robot (blue) starts at the left. Robot plans are shown with black solid
lines. Human plans are shown with red dashed lines.
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(d) t = 6 s
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Figure 4.4.6: Example of MAP aligned planning. The robot (blue) starts at the left.
Robot plans (MAP estimate of the equilibrium belief) are shown with black solid lines.
Human plans are shown with red dashed lines. Blue lines visualize particle trajectories
where the opacity is proportional to the particle weight. The particle weight distribution
of the posterior belief is shown as a histogram over particle indices.
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Scalability: 5-Player Scenario

Finally, scalability of the MAP aligned planner is tested by applying it to a 5-player version
of the navigation problem. Examples of equilibrium trajectories for this larger version of
the problem are shown Figure 4.4.8.
Figure 4.4.7 shows the distribution of costs incurred by each player over 200 simulations
of the 5-player scenario for MAP aligned approach as well as the baseline. Again, one
can observe a significant improvement by inferring the local equilibrium and aligning the
robot’s strategy accordingly.
This improvement is most noticeable for the autonomous agent (Player-1). The reason for
this larger gap in performance is the increased complexity of the problem which reduces the
chance of choosing an aligned strategy without actively reasoning about the equilibrium
chosen by other players. Human players, on the other hand, only incur a high cost if the
robot’s misalignment causes conflict with their selected strategy. Another indicator for
this finding is the fact that those human players initially located close to the robot, i.e.
Player-2 and Player-5, exhibit the largest improvement of their cost distribution if the
robot uses strategy alignment instead of the baseline approach.
Note, however, that the inference problem becomes harder as the number of players and
equilibria in the problem are increased. Hence, the variance of the cost is significantly
higher as compared to the 3-player example and the cost distributions exhibit a longer tail.
By examining scenarios in the tail end of the distribution it can be observed that these
instances typically correspond to cases where there are multiple high-likelihood equilibria
for a large part of the game horizon. If in such a case the robot commits to a misaligned
equilibrium, it takes a suboptimal path and has to apply larger inputs once the MAP
estimate changes and eventually matches the true latent state. Furthermore, there is
an increased chance that humans select an equilibrium which is not represented by any
particle in the robot’s belief. Note, however, that the latter problem can be addressed by
increasing the number of particles. Figure A.1.1 in the appendix of this thesis demonstrates
that the planning performance is further improved if a larger number of particles is used.
In practice, the number of particles is to be chosen based on the available computational
resources and the required level of safety and efficiency for the application domain.

Remarks on Runtime The increased number of particles and the higher computational
complexity of finding equilibria significantly increase the run-time for this problem. In the
implementation of the 5-player navigation problem, solving for a single local equilibrium
from scratch takes on average 85 ms. When utilizing warm-starting, this time can be
reduced to 9 ms. Accordingly, a planning step takes 1.35 s when updating all 150 particles
using a single thread. However, many particles converge to the same equilibrium. Thus,
by not only combining the weights but also sharing solutions between particles that have
been identified to represent the same equilibrium as per the call to CombineDuplicates,
the performance can be significantly improved. Employing this optimization, the average
runtime is reduced to 196 ms for this example. Thus, while in the current implementation
the 5-player problem can not be solved in real-time, the runtime still remains moderate.
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Furthermore, it should be noted that for the experiments conducted here, inference
only uses a single thread. However, solutions for individual particles can be computed
independently and thus large parts of the inference procedure are trivially parallelizable.
As each particle update is computed in well below 100 ms, a multi-threaded particle filter
implementation poses a promising approach to achieve real-time planning-rates above
10 Hz. Beyond that, elimination of low-likelihood particles, e.g. via standard resampling
or simple thresholding, may help to further reduce the runtime.
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Figure 4.4.7: Distribution of costs incurred by each player in a 5-player navigation problem.
(a) InferEQ: Player-1 uses strategy alignment. (b) Baseline: Player-1 ignores equilibrium
uncertainty.

4.4.5 Final Discussion and Conclusion

Before this chapter is closed, this section summarizes the main results of the evaluation,
discusses limitations and provides possible directions to overcome some of the shortcomings
of the approach.
The Monte Carlo study presented in Section 4.4.2 demonstrates the expressiveness of a
game-theoretic interaction model and shows that approximate local Nash equilibria have
an intuitive interpretation in the studied navigation problem: each of them corresponds
to a different plausible mode in which players may seek to avoid collisions with others.
The fact that this large variety of local solutions could be recovered from a simple seed
distribution additionally highlights the utility of the sampling based approach as a tool
for practitioners.
The prediction experiments in Section 4.4.3 demonstrate that the proposed equilibrium
inference method significantly improves upon the predictive power of a game solver that only
considers a single local equilibrium. With respect to the focus of this work — closed-loop
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interaction of robots with humans — accurate prediction is crucial in order to find safe and
efficient plans. However, the demonstrated predictive power makes equilibrium inference
an interesting approach for other application domains, too. For example, a predictor using
equilibrium inference may be used for traffic monitoring to detect misaligned, thus unsafe
behavior.
The closed-loop interaction experiments conducted in Section 4.4.4 show that by inferring
the equilibrium that determines the human behavior, the robot is able to reduce not only
its own cost, but also the cost of all other players. A case study of a scenario in which
the robot invokes a misaligned strategy provides the following insight: if the robot fails to
align with the human equilibrium, the locally optimized strategies of two or more players
may be rendered highly inefficient. In the example studied here, this misalignment results
in a coordination failure where two players expect their opponent to pass the conflict area
first.
Of course, a real-world scenario, human players are likely not bound to a fixed equilibrium
and may align to the robot strategy if they detect the coordination failure. Thus, in
practice, the performance gap between a strategy aligned planner and non-aligning baseline
may be less severe. However, expecting humans to resolve such conflicts would result in
overly aggressive behavior of the robot and can result in inefficient or even unsafe behavior
in interaction with less attentive humans. Nonetheless, studying equilibrium alignment in
experiments with real human behavior remains an important direction of future work.
With respect to real-time performance and scalability of the approach, the conducted
experiments show mixed results. For the 3-player example studied in this work, the
approach achieves real-time performance. When scaled to five players, the runtime remains
moderate, but real-time performance is not achieved. This experiment shows that the
number of particles required to cover a larger number of equilibria and the computational
complexity of solving high-dimensional games are limitations of the proposed approach.
Possible directions to address this problem are to consider only a limited number of relevant
players, or to decouple the problem into independent groups of players. Furthermore, the
number of samples required to recover all equilibria may be reduced by incorporating prior
knowledge in the seed distribution. If the basin of attraction for different equilibria is well
understood, in the best case, only a single sample is needed to recover each equilibrium.
One possible approach to the design of a more advanced seed distribution is to solve a large
number of games offline and perform spatial clustering on the solution (c.f. Section 4.4.2)
to select only one seed per equilibrium; i.e. casting a categorical distribution over seeds
that are likely to converge to different equilibria. In some special cases, it may also be
possible to construct suitable seed strategies systematically, for example, via braid theory
[81].
This chapter only considered problems in which the robot has full knowledge of the
objectives of other players. This shortcoming is addressed in the next chapter by extending
the inference framework to consider a distribution of possible objectives for other players.
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Figure 4.4.8: Four examples of equilibria in a 5-player navigation problem. Initial positions
and positions at half the simulation horizon highlighted, respectively, with rectangular
and circular markers.
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Chapter 5

Planning with Objective Uncertainty

Chapter 4 proposed an inference algorithm for reasoning about the equilibrium solution
that other players operate at and introduced a planning scheme for aligning the robot’s
strategy accordingly. However, this decision model considered only problems with a
priori known objectives of all players. Examples of objective uncertainty in the problems
discussed in the preceding chapter are given by the fact that the robot may not know the
desired goal location of human players or their aggressiveness; i.e. the extend to which
each player is willing to make room for others to avoid a collision. As a result, in the face
of objective uncertainty, in addition to not knowing which equilibrium is playing out, the
robot does not know which game human players are solving to generate their behavior.
This chapter extends the approach presented in Chapter 4 to such scenarios with partially
observed objectives and investigates the value of reasoning about objective uncertainty in
HRI scenarios.
This chapter is structured as follows. First, Section 5.1 extends the problem formulation
and decision model presented in Chapter 4 to scenarios with partially observed objectives.
Section 5.2 then discusses how the particle filtering technique for equilibrium inference can
extended to make use of this decision model. Since large parts of adapted inference method
are closely related to the approach discussed in Chapter 5, these theoretical discussions are
kept brief and seek to highlight only the relevant differences. Finally, Section 5.3 evaluates
the extended inference approach in simulation and compares it to the method developed
in Chapter 4.

5.1 Problem Statement and Decision Model

In this section the problem statement given in Section 4.2 is extended to scenarios with
objective uncertainty and the decision model is formulated accordingly.
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5.1.1 Game Formulation with Partially Observed Objectives

Again, the interaction of a single robot with N − 1 humans in an N -player general-sum
differential game is considered. Furthermore, the fully observed game formulation, the
equilibrium concept, and conventions about player indexing are directly inherited from
the formulation in Section 4.2.2.
To incorporate aspects of objective uncertainty, the following augmentation is made.
Instead of giving the autonomous agent (Player-1) direct access the cost functions, J2:N , of
other players, an asymmetric information pattern is chosen in which the robot only knows
the distribution from which these objectives are drawn. For this purpose, a distribution is
defined from which the cost functions of all humans are jointly sampled. This distribution
of player costs induces a distribution over games that human players may solve to generate
their behavior.
The cost function distribution is defined via a parametric family of cost functions. For
each human player, i ∈ [N ] \ {1}, a cost function

Ji (u1:N(·); Θi) ,
∫ T

0
gi (t, x(t), u1:N(t); Θi) dt,∀i ∈ [N ] \ {1} , (5.1.1)

is defined, which augments the formulation in Equation (2.1.2) with a vector of np,i
parameters, i.e. Θi ∈ Rnp,i . Using this parametric formulation, the distribution of cost
functions is implicitly defined by specifying the distribution of the joint parameter vector,
Θ = [Θ2; . . . ; ΘN ]. This parameter distribution is denoted PΘ.
Note that this probabilistic description of the game is only from the perspective of
the autonomous agent, while the human players still generate their behavior from the
equilibrium solution of a fully observed game with deterministic objectives of all players.

Running Example. The running example of a HRI problem originally introduced in
Section 4.2.1 is revisited and extended to scenarios with partially observed objectives. For
this purpose, the navigation problem is modified such that the robot does not know the
aggressiveness of other players.
The system dynamics given in Equation (4.2.4) and the structure of the cost given in
Equations (4.2.5) to (4.2.8) are directly inherited from the running example used in
Chapter 4. To model partial observability of the aggressiveness of each player, the
proximity cost weight, cprox,i, is modeled as an unknown parameter of the cost function
of each human, i ∈ [N ] \ {1}. Two different values for this proximity cost weight are
considered: c̄prox and cprox, with c̄prox � cprox. A high proximity cost weight for player
i, i.e. cprox,i = c̄prox, causes that player to give a wider berth to make room for others.
Conversely, a low proximity cost weight, i.e. cprox,i = cprox, causes player i to act more
aggressively in that this player takes only little effort to make room for others.
Finally, the objective distribution of the game is defined by choosing Θi = cprox,i as the
parameterization of cost function Ji and defining a distribution over that parameter. For
simplicity, in this example the discrete uniform distribution U{cprox, c̄prox} is used and
parameters for different human players are drawn independently from this distribution.
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5.1.2 Objective Inference Model

Using the augmented problem formulation presented above, the strategy alignment problem
is extended to incorporate objective inference. Following a similar line of arguments as
in Section 4.2.3, it is assumed that there exists a differential game with deterministic
objectives whose solution to a local equilibrium determines the behavior of all humans.
Hence, humans are assumed to be able to fully observe the objectives of other players.
The robot, however, can not directly observe the objectives of other players. Thus, it
needs to solve the joint problem of both: inferring the objectives J2:N (i.e. the parameter
vector Θ), and inferring the human equilibrium selection within the corresponding game.
In general, both inference problems need to be addressed jointly as the equilibria in the
game depend upon the objectives. Hence, the robot may maintain a joint belief over both,
the latent cost parameter vector Θ, and the latent equilibrium kt, i.e.

bt(Θ, kt) , p(Θ, kt|x1:t, u1,1:t). (5.1.2)
Note that in this formulation the cost parameter is assumed stationary and thus the cost
parameter is denoted without time index.
The augmented DDN for this problem is given in Figure 5.1.1. In contrast to the
formulation in Figure 4.2.2, here, the latent equilibrium kt at time t additionally depends
on the time-invariant parameterization Θ of the human objectives.

u1,t: the agent’s input
Θ: latent objetive parameters
kt: latent equilibrium
x̂t: predicted physical state
xt: true physical state
t: time index

u1,t

kt−1 kt

x̂t−1 x̂t

xt−1 xt

Θ

Figure 5.1.1: DDN used to model the joint inference of human objectives and equilibria.

5.2 Strategy Alignment in Games with Partially Ob-
served Objectives

Since any problem with fully observed objectives can be formulated using the augmented
decision model with a deterministic distribution of objective parameters, it is obvious that
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the inference problems considered here are at least as complex as the problem class studied
in Chapter 4. Consequently, performing an exact belief update of Equation (5.1.2) remains
impractical for this class of problems. Instead, the particle filtering technique presented in
Chapter 4 is augmented to accommodate objective uncertainty. With this adapted belief
update, aligned closed-loop planning can then be realized using the same approach as
presented in Chapter 4, i.e. by invoking the agents strategy from the MAP equilibrium.
Given the DDN in Figure 5.1.1 the belief update rule for Equation (5.1.2) can be written
as

bt(Θ, kt) ∝
∫
kt−1∈K

∫
x̂t∈X

p(xt|x̂t)p(kt, x̂t|u1,t, kt−1, xt−1,Θ)bt−1(Θ, kt−1) dx̂t dkt−1. (5.2.1)

The approximation of this update rule via a particle filter can be achieved by making two
essential changes to the approach presented in Section 4.3.
First, in order to approximate the joint belief over objectives and equilibria, a particle in
this problem corresponds to a tuple of a parameter sample, Θ(k), and a strategy profile,
γ(k). Hence, the generation of the initial particle belief described in Algorithm 3 needs
to be adjusted to draw samples accordingly. The adapted sampling procedure for the
initial particle belief is summarized in Algorithm 6. In this work, particles are drawn from
the product of the parameter distribution, PΘ, and the seed distribution, Pγ. This step
corresponds to line 2 and 3 of Algorithm 6. Note, however, that for some applications
a joint distribution that does not assume statistical independence of the seed and the
objective may pose a useful extension that is easily implemented. In contrast to the
procedure described in Algorithm 3, here the call to SolveGame additionally takes the
objective parameter Θ(k) when solving the game for particle index k (line 4 of Algorithm 6).

Algorithm 6 Generation of an initial particle belief for objective inference from the
product of PΘ and Pγ.

1: procedure GenerateInitialBelief(PΘ,Pγ)
2: {Θ(k)}k∈[K] ← sample K objective parametrizations from PΘ

3: {γ̄(k)
0 }k∈[K] ← sample K strategy profiles from Pγ

4: B̄0 ← {(Θ(k), γ
(k)
0 ≡ SolveGame(x0, γ̄

(k)
0 ; Θ(k)), w(k)

0 ≡ 1)}k∈[K]
5: B0 ← CombineDuplicates(B̄0)
6: return B0
7: end procedure

Second, the transition step of the particle filter needs to consider the dependence of the
transition model, p(kt, x̂t|u1,t, kt−1, xt−1,Θ), on the objective parameter Θ (c.f. Equa-
tion (5.2.1)). The resulting algorithm for joint inference of objectives and equilibria is
summarized in Algorithm 7. Here, SolveGame again is invoked with parameter, Θ(k),
for particle index k (c.f. line 4 of Algorithm 7). Since the objective parametrization is
assumed to be stationary, Θ(k) is copied without modification to the updated belief (line 7
of Algorithm 7).
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Algorithm 7 Particle filter for joint inference of objectives and equilibria.

1: procedure UpdateEQOBBelief(Bt−1 ≡ {(Θ(k), γ
(k)
t−1, w

(k)
t−1)}k∈[K], xt−1, xt, u1,t)

2: B̄t ← ∅
3: for particle index k = 1 . . . K do
4: γ

(k)
t ← SolveGame

(
xt−1, γ

(k)
t−1; Θ(k)

)
5: x̂

(k)
t ← xt−1 +

∫ t
t−1 f

(
τ, x(τ), u1,t, γ

(k)
−1 (x(τ))

)
dτ

6: w(k) ← w(k)p(x(t)|x̂(k))
7: B̄t ← B̄t ∪ (Θ(k), γ

(k)
t , w

(k)
t )

8: end for
9: Bt ← CombineDuplicates(B̄t)

10: return Bt
11: end procedure

5.3 Evaluation

This section examines the value of objective inference for prediction and planning. For
this purpose, the objective inference approach presented above is compared to a method
that uses only equilibrium inference while assuming a fixed objective, and a baseline that
assumes a fixed value for both latent variables. The evaluation is performed in simulation
of two different scenarios: a problem with unknown aggressiveness of other players, and a
problem with unknown goal locations.
This section is structured as follows. Section 5.3.1 describes the simulated scenarios and
introduces the compared methods. Section 5.3.2 performs a Monte Carlo study of equilibria
for the different cost parameters in the support of the objective distribution. Section 5.3.3
compares the prediction performance of the different approaches in a setting where the
robot observes the interaction of multiple agents. Section 5.3.4 investigates the value of
objective inference in a closed-loop interaction scenario. Finally, Section 5.3.5 concludes
by summarizing the main results and discussing their implications.

5.3.1 Experiment Details and Parameters

Evaluation Problems

Two different problems with partially observed objectives are studied to evaluate the
performance of the proposed inference method: first, a problem in which the aggressiveness
of other players is unknown, and second, a problem with unknown goal positions of other
players.

Uncertain Aggressiveness The scenario with uncertain aggressiveness of other players
is modeled as described in the running example discussed in Section 5.1; i.e. by casting a
discrete uniform distribution over the proximity cost parameter, cprox,i, for each player.
The two values of the proximity cost weight used to model aggressive and non-aggressive
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behavior are given in Table 5.1. All other game parameters are directly inherited from the
experiments in Chapter 4 (c.f. Table 4.1).

Table 5.1: Proximity cost weights used to model levels of aggressiveness.

Parameter Symbol Value
aggressive proximity cost weight cprox 10
non-aggressive proximity cost weight c̄prox 50

Uncertain Goal Positions A problem with uncertain goals of human players is modeled
by making the goal position, xg,i, for each human player, i ∈ [N ] \ {1} an unknown
parameter of their cost function; i.e. choosing the parametrization Θi = xg,i in Ji. Here,
two different goal positions for each human player are considered. The first goal candidate
for each player is on the side opposite to their starting position, i.e. the player goes straight
over the intersection as in Chapter 4. The second goal candidate is given by a left turn of
60◦. That is, Player-2 may decide to turn left towards the initial position of Player-1, and
Player-3 may decide to turn left towards the initial position of Player-2. All other game
parameters are directly inherited from the experiments in Chapter 4 (c.f. Table 4.1).

Approaches

In order to examine the value of objective inference, two different methods are compared
to the objective inference approach presented in Section 5.2:

Baseline: A fixed hypothesis for both, the equilibrium and the objective, is used without
actively reasoning about the likelihood of either latent variable.

InferEQ: Equilibrium inference as presented in Section 4.3 is used by assuming a fixed
objective.

For the evaluation problem with uncertain goal positions, these approaches randomly select
an assumed objective for other players. For the experiments with uncertain aggressiveness
of human players, two variants of each approach are considered: an optimistic version,
denoted with postfix ”+”, that assumes non-aggressive behavior for human players, and a
pessimistic approach, denoted with postfix ”-”, that always assumes aggressive behavior.
Finally, all particle filtering approaches are simulated with K = 150 particles in the exper-
iments conducted here. The remaining filter parameters, including the observation noise
and the seed distribution parametrization, are inherited from Chapter 4 (c.f. Tables 4.2
and 4.3).
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5.3.2 Monte Carlo Study of Local Equilibria

This section analyzes the qualitatively different local equilibria that exist for each evaluation
problem. For this purpose, the possible objectives that may be attained by sampling
a parametrization from PΘ are enumerated and the resulting game is solved for 300
random samples from the seed distribution Pγ. Since each of the human players in the
studied evaluation problems has two alternatives to choose from, each problem allows for
a total of four different objective assignments. Each objective assignment corresponds to a
different true game that may play out. Within each of these true games there are multiple
equilibria which are identified by performing spatial clustering on the sampled solutions.
The clustered local equilibria for both problem are examined hereafter.

Uncertain Aggressiveness

For the problem with uncertain aggressiveness of human players an overview of all possible
objective assignment is given in Figure 5.3.1. Here, the equilibrium with the lowest cost
incurred by the robot is shown for each objective parametrization.
The first objective parametrization, depicted in Figure 5.3.1 (a), corresponds to a scenario
in which all players have the same high incentive to avoid each other, i.e. both humans are
non-aggressive. This scenario corresponds to the problem discussed in the previous chapter
and hence the same equilibria as shown in Figure 4.4.2 are attained (c.f. Figure B.1.1).
In the scenario depicted in Figure 5.3.1 (b), Player-2 (red) has aggressive while Player-3
(purple) has a non-aggressive objective parametrization. Accordingly, it can be observed
that Player-2 takes only little effort to avoid others while the remaining players are forced
to take a wider berth to avoid a collision. Figure 5.3.1 (c) shows a similar situation, now
with opposite cost parametrization of both human player.
Finally, Figure 5.3.1 (d) shows an exemplary equilibrium for the scenario in which both
human players have a low incentive to avoid other players. Here, only the autonomous
agent (blue) takes a wider berth to avoid a collision.
In the interest of brevity, the full Monte Carlo study for this problem is provided in the
appendix of this thesis, Figures B.1.1 to B.1.4. This study shows that the equilibria
attained within the different objective parametrizations are structurally similar to the
problem discussed in the previous chapter; i.e. an equilibrium can be recovered for each
possible order in which players may wish to pass the conflict area. Hence, a total number of
32 equilibria is recovered for this problem, 8 for each possible objective parametrization. As
discussed above at an example for each parametrization, within each objective assignment
the local equilibrium trajectory varies slightly depending on the aggressiveness of each
human player.
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Figure 5.3.1: Equilibrium clusters with the lowest cost incurred by the robot for all
possible proximity cost parametrizations of human players. (a) Both humans are non-
aggressive. (b) Player-2 (red) is aggressive, Player-3 (purple) is non-aggressive. (c) Player-2
is non-aggressive, Player-3 is aggressive. (d) Both humans are aggressive.

Uncertain Goal Positions

Figure 5.3.2 gives an overview of all possible objectives of humans in the evaluation problem
with uncertain goals. Here, each of sub-figure shows a different goal assignment for human
players. The first case (a) corresponds to the original running example of Chapter 4 in
which all players go straight. In the remaining three cases are scenarios in which (b)
Player-1 , or (c) Player-2, or (d) both human players take a left turn.
A full Monte Carlo study for each case is provided in the appendix of this thesis, Fig-
ures B.2.1 to B.2.4. In this study, again, a total number of 32 equilibria are recovered,
with 8 equilibria for each of the four objective parametrizations. As for the other problem
studied in this work, these equilibria correspond to different orders in which players may
wish to pass the conflict area.
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Figure 5.3.2: Equilibrium clusters with the lowest incurred by the robot for all possible
combinations of human goal positions. (a) Both human players want to go straight. (b)
Player-2 (red) wants to turn left, Player-3 (purple) wants to go straight. (c) Player-2 wants
to go straight, Player-3 wants to turn left. (d) Both human players want to turn left.

5.3.3 Prediction Performance

This section examines the utility of the proposed objective inference approach for prediction
of observed behavior. The experiments conducted here are of the same form as the
prediction experiments presented in Section 4.4.3. That is, the agent observes a game
playing out at an unknown local equilibrium and is tasked to predict the system trajectory
for the remaining game horizon. For each evaluation problem the prediction error is then
evaluated by examining its statistical evolution over the prediction and the simulation
horizon. The presented data is collected from 200 simulations of each problem. For each
simulation run an objective parametrization and a strategy seed are sampled to generate
the observed game solution.

Uncertain Aggressiveness

Figure 5.3.3a shows the prediction error statistics over the prediction horizon for the
evaluation problem with uncertain aggressiveness of human players. As for the problem
discussed in the previous chapter, the position at the current time is perfectly observed
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and the goal positions of all players are known. Hence, the prediction error at the
beginning and the end of the prediction horizon are trivially low. In the intermediate
range, however, there is a notable gap in performance for the different approaches. The
baseline approaches show a poor prediction performance and are clearly dominated by
all other methods. Equilibrium inference with fixed objective (optimistic InferEQ+
and pessimistic InferEQ-) exhibit a considerably lower average prediction error. The
objective inference approach (InferEQOB) shows the lowest prediction error in this
range.
An evaluation of the error statistics for the same data over the simulation horizon is shown
in Figure 5.3.3b. Here, it is apparent that the baselines are only able to make an accurate
prediction after about half the simulation horizon; i.e. when the conflict has been resolved
and the problem essentially degenerates to three decoupled optimal control problems.
Equilibrium inference, on the other hand, achieves a noticeably reduced prediction error
after observing about 1 s of the game. After this initial fast decay of the prediction error
for equilibrium inference, the error plateaus and only slowly decays. Finally, the objective
inference approach exhibits a quickly decaying prediction error and makes almost perfect
predictions after 2 s into the game.
In summary, the performance gap between the baselines and equilibrium inference is large
compared to the gap between equilibrium inference and objective inference. These results
indicate that, despite potential objective mismatch, the equilibrium inference approaches
are still able to identify a qualitatively similar equilibrium that allows moderate prediction
errors. The reason for this is the fact that a mismatched objective in this problem only
causes a small deformation of the equilibrium trajectories (c.f. Figure 5.3.1). Hence, from
the perspective of prediction performance in this problem, equilibrium inference alone
already provides a significant improvement.

Uncertain Goal Positions

Figure 5.3.4a shows the prediction error statistics over the prediction horizon for the
evaluation problem with uncertain human goal positions. For the approach using objective
inference, the prediction error grows slower than for all other approaches. Furthermore,
equilibrium inference exhibits a lower prediction error than the baseline approach. Since
only the position at the current time step is known, all methods exhibit a large prediction
error towards the end of the prediction horizon. Note that the later regime of the error
statistics is composed of predictions made at the earlier stage of the simulation. For
example, predictions for a 10 s look ahead are only ever made at the first time step of the
simulation. At the next time step the remaining game horizon is already 0.1 s shorter and
hence predictions only contribute to error statistics up to a 9.9 s look ahead. Consequently,
even for the approach using objective inference (InferEQOB), the error in the later
regime of the prediction horizon increases since these predictions are based on a smaller
number of observations.
The evolution of error over the simulation horizon for the same data is shown in Fig-
ure 5.3.4b. Here, the prediction error of the baseline initially plateaus at a high value and

61



only decays after about half the simulation horizon. Equilibrium inference (InferEQ) is
able to reduce the prediction error within the first second of the simulation after which
the prediction error plateaus in a lower regime. After half the simulation horizon both
the baseline and the equilibrium inference approach achieve the same performance but
still maintain a comparably high prediction error which only decreases towards the end
of the experiment. Objective inference, on the other hand, exhibits a steadily decreasing
prediction error and makes almost perfect predictions after about 2.5 s of the observed
game.
The final decay of the prediction error for equilibrium inference and the baseline approach
is a direct consequence of the fact that the size of the reachable state space decreases as
the remaining time approaches zero. Furthermore, the performance gap between these
approaches within the first half of the experiments indicates that equilibrium inference,
despite potential objective mismatch, is still able to identify a solution that matches the
observed behavior more accurately. The fact that both equilibrium inference and the
baseline achieve the same prediction performance in the second half of the simulation
supports this finding. That is, as soon as conflicts between the objectives of different players
are resolved, equilibrium alignment is trivially achieved and the remaining prediction error
is a result of objective mismatch alone.
In summary, objective inference clearly dominates all other approaches. In comparison to
the problem with uncertain aggressiveness of human players, for this scenario, inferring
the objective parameters in addition to the latent equilibrium provides has a greater value
for accurate prediction of behavior.
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(a) Error statistics over prediction horizon.
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(b) Error statistics over simulation horizon.
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Figure 5.3.3: Mean squared prediction error for uncertain aggressiveness of human players.
InferEQOB: inference of objectives and equilibria. InferEQ: inference of equilibria, ignoring
objective uncertainty. Baseline: ignoring intention uncertainty. Postfix ”+”: assuming
non-aggressive human behavior (optimistic). Postfix ”-”: assuming aggressive human
behavior. Ribbons indicate the standard error of the mean.
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(a) Error statistics over prediction horizon.
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(b) Error statistics over simulation horizon.
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Figure 5.3.4: Mean squared prediction error for uncertain human goal positions.
InferEQOB: inference of objectives and equilibria. InferEQ: inference of equilibria, ignor-
ing objective uncertainty. Baseline: ignoring intention uncertainty. Ribbons indicate the
standard error of the mean.
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5.3.4 Closed-Loop Interaction

This section examines the utility of objective inference in closed-loop interaction scenarios.
For each evaluation problem the costs incurred by all player are recorded for 200 simulations.
The human behavior in each simulation run is generated by randomly sampling an objective
parametrization from PΘ and solving the game at a randomly sampled seed from Pγ.

Uncertain Aggressiveness

Figure 5.3.5 shows the distribution of costs incurred by each player for the evaluation
problem with uncertain aggressiveness of humans. Additionally, Table 5.2 shows the
numerical values of the mean cost incurred by each player.
In this evaluation it is clear that if the autonomous agent uses one of the baseline approaches,
the cost for all player is significantly higher than if the robot utilizes one of the three
inference approaches. Within the baseline approaches, the pessimistic variant (Baseline-)
shows a slightly better performance than the optimistic approach (Baseline+). Within the
inference approaches, the performance gaps are smaller and require a closer examination.
First, consider only the cost incurred by the robot (Player-1). Taking the median of
the cost distributions for the robot, objective inference (InferEQOB) and optimistic
equilibrium inference (InferEQ+) achieve a slightly better performance than pessimistic
equilibrium inference (InferEQ-). Taking into account the upper tail end of the agent’s
cost distribution, i.e. focusing on the worst case outcomes, optimistic equilibrium inference
shows the worst performance among the inference approaches. For pessimistic equilibrium
inference, the worst case cost is similar to the one for the optimistic variant but the
frequency of these outcomes is clearly reduced. Objective inference, in contrast, results
in a smaller worst case cost for the robot than all other approaches and the upper tail
end of the agent’s cost distribution is noticeably more confined. Furthermore, considering
the best case costs for the robot, it can be observed that the pessimistic approaches do
not achieve the performance of their optimistic counterparts and the objective inference
approach. Focusing on the costs incurred by human players (Player-2 and Player-3), it
can be observed that pessimistic equilibrium inference admits a marginally lower cost for
human players than optimistic equilibrium inference or the objective inference approach.
Finally, considering the mean of the player cost distributions for each approach as shown
in Table 5.2, it is clear that objective inference results in the lowest average cost for the
robot, while for the human, the average cost is lowest if the robot utilizes pessimistic
equilibrium inference.
The presented results admit multiple insightful conclusions. First, it can be concluded that
being pessimistic about human behavior in this scenario, i.e. assuming aggressive behavior
of other players, helps to reduce the worst case outcomes for the robot. The reason for this
is the fact that this planning approach results in more conservative plans. The reduced
cost for human players in this case is a direct consequence of this suboptimal play by the
robot. If the robot takes a wide berth because it assumes that humans behave aggressively,
it admits a more efficient strategy for non-aggressive humans. Finally, pessimistic planning
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can not achieve the best case performance of the other inference approaches since the
pessimistic strategies are suboptimal if the true human behavior instead is non-aggressive.
Conversely, optimistic equilibrium inference is able to exploit more efficient strategies if
humans are non-aggressive but can result in more costly maneuvers if the true human
behavior corresponds to an aggressive parametrization.
In summary, objective inference achieves the best planning performance among all discussed
approaches. By reasoning about both, the objective parametrization and the equilibrium,
the worst case and the mean costs are reduced while achieving the same best case
performance as the optimistic competitors.

Table 5.2: Mean and standard error of the mean of player costs for uncertain aggressiveness
of human players. The lowest cost for each player is marked bold.

mean cost P1 mean cost P2 mean cost P3
InferEQOB 840.0 ± 10.6 674.9± 5.5 671.1± 5.2
InferEQ- 877.3± 12.9 667.0 ± 4.9 662.1 ± 4.6
InferEQ+ 897.7± 18.3 684.1± 5.1 683.7± 4.8
Baseline- 1094.0± 20.0 780.0± 19.0 779.8± 18.5
Baseline+ 1214.1± 28.2 851.7± 23.5 835.8± 22.2

Uncertain Goal Positions

Figure 5.3.6 shows the distribution of costs incurred by each player for the evaluation
problem with uncertain human goal positions. Additionally, Table 5.3 summarizes the
numerical values of the mean cost incurred by each player.
The baseline exhibits a significantly higher cost for all players and is clearly dominated by
both inference approaches. Among the inference approaches, the difference in performance
is less severe. The only noticeably differences between the corresponding cost distributions
is the fact that objective inference exhibits a shorter tail towards high costs for the robot;
i.e. the worst case cost and the frequency of these unfavorable outcomes is reduced.
The numerical values of the mean cost incurred by each player in Table 5.3 show that, on
average, objective inference exhibits the lowest cost for all players. This gap in performance
is most noticeable for the autonomous agent (Player-1).
The results presented above show that reasoning about the goal position in addition
to the latent equilibrium of human players improves the planning performance in this
scenario. However, perhaps surprisingly, the gained utility for closed-loop interaction is
small compared to the gained performance for prediction (c.f. Section 5.3.3). A hypothesis
which explains this finding is that even for mismatched objectives, i.e. assuming an
incorrect goal location of for another player, there still exists an equilibrium that allows
an accurate short-term prediction of the human behavior.
In order to test this hypothesis, the prediction error for this problem is examined again,
but now considering only predictions up to 2 s into the future. Figure 5.3.7 shows the
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mean squared error of these short-term predictions. Here, it is clear that the short-term
prediction error for equilibrium inference grows only slowly in the first half of the simulation
and stays close the performance of objective inference. Since the resolution of conflicts
between players occurs in the first half of the simulation, from the perspective of closed-loop
planning, accurate prediction of decisions of other players is predominantly relevant in the
earlier phase of the problem. Hence, despite the fact that equilibrium inference exhibits a
high long-term prediction error if human goal positions are unknown (c.f. Figure 5.3.4b),
the accurate short-term prediction in the early phase of the problem still allows the agent
to identify an efficient strategy for closed-loop interaction.
In summary, objective inference improves the performance of the autonomous agent in the
closed-loop interaction problem with uncertain human goal positions. However, equilibrium
inference neglecting goal uncertainty still achieves similar performance in many cases since
the short-term prediction error in the relevant regime remains low.

Table 5.3: Mean and standard error of the mean for player costs for uncertain human goal
positions. The lowest cost for each player is marked bold.

mean cost P1 mean cost P2 mean cost P3
InferEQOB 656.2 ± 5.0 587.7 ± 9.0 578.6 ± 8.3
InferEQ 683.3± 9.2 589.7± 9.9 590.5± 10.6
Baseline 1028.2± 28.4 743.6± 20.8 759.5± 25.0

Remarks on Runtime

As discussed in the previous chapter, the runtime of the equilibrium inference approach is
dominated by the time it takes to compute a single particle transition and therefore is
linear in the number of particles. Hence, for the 3-player problems studied in this chapter,
a single game instance is still solved within 7.5 ms, or 1.5 ms when using warm-starting
(c.f. Section 4.4.4). However, objective uncertainty increases the number of equilibria in
the problem and therefore requires the use of a higher number of particles to cover the
joint latent space of equilibria and objectives. Therefore, even if warm-starting is used,
an update of all 150 particles takes approximately 230 ms. Thus, real-time planning at
10 Hz is not achieved in this implementation. Still, the runtime remains moderate and the
gap to real-time performance may be closed with the measures discussed in the previous
chapter (c.f. Sections 4.4.4 and 4.4.5).

5.3.5 Final Discussion and Conclusion

To conclude this chapter on planning with uncertain equilibria of human players, this
section summarizes the main results and discusses their implications.
The Monte Carlo study in Section 5.3.2 demonstrates that, in the presence of objective
uncertainty, the number of possible equilibria is significantly increased. In the problems

67



studied here, it is found that even for vastly different objectives, equilibria exhibit a striking
structural similarity; for each objective parametrization, the same number of equilibria
is recovered and different objectives cause only continuous deformations of the resulting
equilibrium trajectories. Note, however, that this similarity is not an inherent property of
local equilibria per se, but rather results from the structure of the problem and objectives
[81].
The prediction experiments conducted in Section 5.3.3 show that the robot is able to
predict trajectories more accurately if objective parameters are inferred. However, it is
found that the gain in performance depends upon the type of objective uncertainty. While
in the case of unknown aggressiveness of human players, the prediction accuracy is only
slightly improved by employing objective inference, in the case of uncertain goal positions,
it provides a significant benefit. Note that these results are in line with the results of
the Monte Carlo study; compared to the goal position of a player, their aggressiveness
parameter has only a small impact on the deformation of the equilibrium trajectories.
The closed-loop interaction experiments in Section 5.3.4 show that objective inference
enables the robot to identify more efficient plans when faced with incomplete knowledge of
others players’ objectives. However, it is observed that an equilibrium inference approach
that ignores objective uncertainty still performs well in many cases since the short-term
prediction error in the critical phase of interaction is less effected by objective mismatch
in these experiments. This result indicates that, even if the goal location of a human
is modeled incorrectly, equilibrium inference still finds the solution computed from this
incorrect objective model that best approximates the observed behavior. In the examples
studied here, this is enabled by the fact that equilibria for different objectives exhibit the
structural similarity discussed above. Due to this structure, even if the robot assumes an
incorrect goal location for a human player, equilibrium inference is still able to predict
whether this human will wait or whether she wants to pass first since this behavior is also
captured by the incorrect objective model. Nonetheless, while objective inference does
not drastically improve the mean performance of the robot, it improves the worst-case
performance significantly. Hence, in particular for safety critical applications, the objective
inference approach compares favorably with approaches that ignore objective uncertainty.
Furthermore, it should be noted that there likely exist scenarios in which understanding
the objectives of other players is significantly more critical to safety and efficiency than for
the examined navigation problem. In the examples studied here, objectives of different
players are only weakly coupled through the proximity cost and other aspects, such as
the goal positions of humans, are only indirectly relevant to the payoff for each player.
However, other applications domains, such as robot assisted surgery [82] or collaborative
manufacturing [83], may naturally exhibit a much stronger coupling of objectives of
different players. In such safety critical scenario of close interaction, the objective inference
approach can be expected to provide an even greater impact on the performance of the
system.
Despite these promising results, in the current formulation, the presented inference approach
is only tractable for a small number of possible human objectives. With each additional
objective that the robot must consider, the number of possible human strategies — and
hence, the number of particles required to cover the latent space — is further increased.
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Therefore, applications with many unknown parameters relevant to the safety of the system
require further improvement of the proposed method.
One approach that can help to alleviate this problem is to allow latent transitions of the
objective parameters. For example, the inference model could allow a small probability
for objective parameterizations to transition to a random sample from the parameter
distribution, PΘ. By this means, even if initially a specific parametrization is not sampled,
the robot has a small chance of recovering the objective with every transition of the latent
objective parameter. Nonetheless, such modifications can only provide limited alleviation
to this problem and scaling to high-dimensional latent parameter spaces remains an open
challenge. The next chapter takes a first step towards estimation of high-dimensional
objective models by pursuing a different approach: numerical inversion of ILQG via
differentiable programming.
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Figure 5.3.6: (a) InferEQOB: inference of objectives and equilibria. (b) InferEQ: inference
of equilibria, ignoring objective uncertainty. Baseline: ignoring intention uncertainty.

0.0 2.5 5.0 7.5 10.0
0.0

0.5

1.0

1.5

time [s]

m
ea

n 
sq

ua
re

d 
pr

ed
ic

tio
n 

er
ro

r 
[m

²]

InferEQOB
InferEQ
Baseline

Figure 5.3.7: Mean squared prediction error over simulation time for short-term predictions
in the evaluation problem with uncertain human goal positions. InferEQOB: inference of
objectives and equilibria. InferEQ: inference of equilibria, ignoring objective uncertainty.
Baseline: ignoring intention uncertainty. At every time step, predictions up to 2 s into the
future are considered. Ribbons indicate the standard error of the mean.
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Chapter 6

Towards an Inverse Iterative
Linear-Quadratic Game Solver

The preceding chapters have focused on online methods for handling intention uncertainty
in HRI problems, using the framework of differential games. An important requirement
for application of these approaches in practice is the ability to express a given interaction
problem as a differential game. That is, one needs to identify the differential equation
which characterizes the dynamics of the system and find the cost function that describes
each player’s behavior. While in many cases this may be done manually, doing so for
problems with complex objectives or poorly understood dynamics can be tedious or even
impractical. Instead, it is desirable to learn these aspects of a game from data.
A significant amount of work has focused on recovering system dynamics from state and
input observations, a problem commonly referred to as system identification [84]. In the
context of single-player optimal control, identification of objectives from observed behavior
has also been addressed with great success by recent work [6, 85]. In a single-player setting,
this problem is commonly referred to as inverse optimal control or inverse reinforcement
learning. Similarly, in a multi-player setting, the problem of recovering objectives from a
given game solution poses an inverse differential game. Literature on this class of problems,
however, is rather scarce since the topic has only recently received attention [86, 87].
This chapter proposes a solution approach to the inverse differential game problem based
on numerical inversion of the iterative linear-quadratic method presented in [1]. In contrast
to the problems discussed in Chapter 5, this chapter is concerned with ex post recovery
of player objectives from a previously recorded dataset; i.e. it is concerned with offline,
rather than online estimation. Since, naturally, datasets of human behavior compose of
imperfect state information [10, 88], the proposed approach is designed to handle both
noise corrupted and incomplete state observations.
Note that this chapter is meant to take a first step towards future work and only validates
the feasibility of the proposed inversion approach. Hence, the discussion in this chapter is
limited to a first proof of concept. A thorough evaluation of the approach on large-scale
datasets of human behavior such as [10] is beyond the scope of this thesis and is left for
future work.
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This chapter is structured as follows. Section 6.1 formally introduces the inverse differential
game problem. Section 6.2 proposes a solution approach for this problem which numerically
inverts the ILQG algorithm. Finally, Section 6.3 validates the feasibility of the proposed
approach based on a minimal example and discusses possible future directions.

6.1 Problem Statement and Approach

The inverse differential game problem studied in this chapter considers a dataset,

Z = {y(t) | t = 0, . . . , T}, (6.1.1)

of state observations, y, that correspond to a sampled state trajectory traced out by a
system with known dynamics,

ẋ = f(t, x, u1:N) , (6.1.2)
which is controlled by N players, where the ith player is in control of inputs ui.
Let the observations in the dataset Z be related to the state vector x via a known
observation model, h, with

y(t) , h(x(t)) + v(t), (6.1.3)
where v(t) is a zero-mean white noise process.
Furthermore, let

Ji (u1:N(·); Θi) ,
∫ T

0
gi (t, x(t), u1:N(t); Θi) dt,∀i ∈ [N ] , (6.1.4)

denote a parametric family of cost functions for each player, with parameters
Θ = [Θ1; . . . ; ΘN ], where Θ ∈ Rr.
Then the inverse differential game problem is to find the parameter vector Θ̂ that best fits
the data of observed behavior, Z, presuming that the N players compete in an N -player
general-sum differential game in which their behavior is characterizes by an approximate
local Nash equilibrium. Here, ”best fit” is determined by the loss function,

L(Θ, Z) ,
T∑
t=0
||(y(t)− ŷ(t; Θ))||2, (6.1.5)

which rates the utility of parameters Θ based on the sum of squared Euclidean dis-
tances between the observations in the dataset, y(t), and the expected observations,
ŷ(t; Θ) , h(x(t; Θ)), which would be received if the game was solved with player objectives
corresponding to Θ.
Given this loss function, the objective parametrization that best explains the observed
behavior is then

Θ̂ = arg min
Θ∈DJ

L(Θ, Z), (6.1.6)
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where DJ ⊆ Rr is the subspace of the parameter space for which a solution to the game
exists.

6.2 Numerical Inversion of Iterative Linear-Quadratic
Games

There are several approaches that may be taken to solve the optimization problem defined
in Section 6.1. For example, one may take a derivative-free approach for numerical
optimization of the loss in Equation (6.1.6). Possible methods that may be implemented
as a direct extension of the Monte Carlo method presented in Chapters 4 and 5 are the
cross-entropy method [89] or particle swarm optimization [90]. While the feasibility of
derivative-free approaches has been demonstrated in the related field of inverse optimal
control [91], such approaches have been reported to converge poorly compared to gradient-
based approaches for smooth parametrizations of the player cost models, Ji [87].
Instead, here, a gradient-based approach is taken to find a (local) minimizer of the loss
function, L. This approach poses the challenge of computing the partial derivative of the
loss with respect to the player cost parameters. However, if differentiation of the loss is
realized, it enables the use of flexible model structures with many parameters, such as
artificial neural networks, for which first-order gradient-based parameter optimization has
been demonstrated with great success by a wide range of recent work [92].

Differentiation of the Loss Function

The computation of the gradient of the loss function, L, requires expansion of the chain
rule until the parameter Θ appears explicitly. For some components of L this might be
easily done manually. For example, the differentiation of the observation model, h, with
respect to the states, x, may be easily obtained. Further down the chain, however, this
process involves a rather unintuitive step: differentiation of the game solution, γ, with
respect to the cost parameters Θ. In this work, the game solution is an approximate local
Nash equilibrium, i.e. a fixed point of the ILQG algorithm. Accordingly, differentiation of
the game solution involves computation of the partial derivative of the procedure outlined
in Algorithm 1 with respect to the parameter vector Θ.
From the above discussion it is clear that the partial derivatives of the loss function are not
trivially computed manually. However, they can be obtained via automatic differentiation
[93]. For this purpose, the loss function, the observation model and the entire game
solution pipeline must be implemented as a differentiable problem. In this work, this is
achieved in a Julia implementation of these components using the iLQGames.jl framework
presented in Chapter 3. In this implementation, automatic differentiation is realized using
ForwardDiff.jl which utilizes dual numbers to compute the derivatives in a forward pass of
the algorithm [65].
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Optimization

Given the differentiable implementation of Algorithm 1, the minimizer, Θ̂, of the loss
function, L, can be approximated using a numerical first-order optimization method of
choice. In this work, gradient-descent is used to solve this problem where the step-size
is chosen adaptively using backtracking line search. However, various other methods are
applicable, such as Gauss-Newton methods or more advanced gradient methods including
momentum terms [94–96].

6.3 Validation

In order to validate the proposed approach, it is tested on synthetically generated observa-
tions of interaction scenarios. This data is generated from games with known values of
the parameters, Θ. Section 6.3.1 describes the details of how these validation datasets
are generated. Using these synthetic datasets for which the respective true models are
known, the inverse ILQG approach is tested with respect to its ability to recover the true
model parameters. The results of these experiments are given in Section 6.3.2. Finally,
Section 6.3.3 concludes with a brief discussion and outlines potential next steps.

6.3.1 Validation Scenario

Validation is performed on 2-player versions of the evaluation problem with uncertain
aggressiveness of human players in Chapter 5. Accordingly, the dynamics are given by
Equation (4.2.4), the cost structure follows Equation (4.2.5), and the proximity cost weight
cprox,2 is the unknown parameter in the parameterization of J2. However, in contrast to
the evaluation problem considered in Chapter 5, here, the unknown parameter is not
constrained to a discrete set of values (i.e. aggressive vs. non-aggressive), but rather is
sampled from a continuous uniform distribution, PΘ = U [cprox, c̄prox]. Here, the lower and
upper bound on the proximity cost parameter, cprox and c̄prox, are chosen as 1 and 100,
respectively. All other game parameters are identical to the experiments conducted in
Chapter 4 (c.f. Table 4.1).
A total of 200 datasets, Zm, are generated by performing the following steps for each of
them:

1. Sample a true model parameterization, Θ∗, from PΘ.

2. Solve the game with objectives given by Θ∗ using ILQG and extract the resulting
state trajectory, x(t).

3. Map the state trajectory to an observation sequence, y(t), by propagating each state,
x(t), through the observation model, h, and adding noise samples, w(t).

For the experiments conducted here, the observation model h is the function that extracts
only the player positions from x; i.e. h(x) = [px,1; py,1; px,2; py,2]. The observation noise,
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w, is sampled from a multivariate Gaussian with diagonal covariance matrix, Σw = σ2
wI,

where the standard deviation is chosen as, σw = 0.1 m.
To give an intuition for the data, Figure 6.3.1 shows an example of a dataset generated
via the procedure outlined above. In this example, the solid lines correspond to the true
game solution and the scattered points indicate the observed positions, y, which compose
a dataset Z.
For the inverse ILQG method, gradient descent is performed with an initial parameter
guess that is sampled from PΘ. Finally, note that the inverse ILQG approach uses the
same initial strategy seed as the true model to consider only effects of unknown objectives
and eliminate effects of mismatched equilibria for this validation.
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Figure 6.3.1: Example of a synthetically generated dataset. Solid lines indicate the true
game solution. Scattered points correspond to the observations contained in the dataset.

6.3.2 Results

The inverse ILQG approach is validated on 200 synthetic datasets as discussed in Sec-
tion 6.3.1. For each experiment, the evolution of the loss, L, and the parameter error,
∆Θ = ||Θ̂−Θ∗||, are recorded for each iteration of gradient descent.
Figure 6.3.2 shows the evolution of the distribution of the parameter error and the
loss for the 200 simulations. Here, ribbons indicate the first and the third quartile of
the distributions. Furthermore, Figure 6.3.3 shows the convergence statistics for these
experiments. This evaluation shows that the inverse ILQG approach converges reliably
for the experiments conducted here. In all 200 simulations, the solver converged within
20 iterations (see Figure 6.3.3 (a)) to a parameter estimate that results in a low loss (see
Figure 6.3.3 (b)), while simultaneously accurately recovering the parametrization of the
true model (see Figure 6.3.3 (c)). To given an intuition for the quality of fit achieved by
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the approach, Figure C.1.1 in the appendix of this figure shows the descent experiment
with the highest final parameter error out of all 200 simulations. Note that even in this
case, the recovered trajectory matches the observations well and deviates only by a small
margin from the true game solution.
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Figure 6.3.2: Distribution of the parameter error and the loss over iterations of gradient
descent in inverse ILQG. Solid lines indicate the median of the distribution. Ribbons
indicate the first and the third quartile.
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Figure 6.3.3: Convergence statistics for inverse ILQG.
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6.3.3 Discussion and Conclusion

The presented results demonstrate that the proposed approach for numerical inversion
of the ILQG algorithm is able to accurately recover unknown objectives from datasets
of noise-corrupted partial state observations. The reliable convergence within a small
number of iterations makes this approach particularly interesting for further investigation.
However, this chapter provides only a first step towards future work and there are several
interesting directions for further investigation.
Most importantly, the framework should be tested in scenarios with a larger number
of unknown parameters and with more flexible model structures for the player cost. In
particular, the use of artificial neural networks for the representation of player objectives
poses an interesting direction. Similar approaches have shown promising results in the
related field of deep inverse reinforcement learning [85]. Furthermore, the optimization
problem may be extended to include not only parameters of the objective function but
also other aspects of the game. For example, the approach may be extended to estimate
the initial strategy profile to address the issue of equilibrium uncertainty.
Beyond that, the approach should be tested on datasets of real-world interactions, such as
[10]. This step is particularly important to assess the capability of game-theoretic models
to capture real human behavior.
Finally, the presented approach may be combined with some of the ideas of the previous
chapters to create an online inference approach that scales well to high-dimensional latent
objectives. A discussion of this more overarching topic of future work is deferred to
Chapter 7.
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Chapter 7

Summary and Future Work

To interact safely and efficiently with environments that are shared with humans, a robot
needs to consider the effects of its actions on the decisions of others. These coupled
interactions of multiple players are well-described by a general-sum differential game,
in which players have differing objectives, the state evolves in continuous time, and
optimal play may be characterized by one of many equilibrium concepts; e.g., a Nash
equilibrium. Recent work has put forth efficient approximations to differential games that
admit solution at real-time planning rates [1]. Despite these advances, an application of
these game-theoretic models to human-robot interaction (HRI) is impeded by the fact
that, in the current formulation, they do not admit to model an important aspect of
such problems, namely, intention uncertainty. This type of uncertainty arises if there
are multiple equilibrium strategies that humans may adapt to achieve their objective, or
if the robot has incomplete knowledge of the human objectives. This work develops an
approach for accommodating intention uncertainty in game-theoretic formulations of HRI
problems and investigates the utility of using this approach in comparison to an existing
game-theoretic planning model that ignores these sources of uncertainty. In addition to
this main contribution, this work proposes an approach for fitting objective models to
datasets of noise-corrupted partial state observations of multi-player interactions; i.e. the
inverse differential game problem.
The remainder of this chapter reviews the specific contributions and results of this thesis
and outlines potential future research directions.

7.1 Contributions and Summary

The first contribution (Chapter 3) is an open-source software framework, iLQGames.jl,
that has been developed as part of this thesis to aid the design and solution of general-sum
differential games. This framework is build around the ILQG algorithm presented in [1] and
is written in the Julia programming language to enable both flexibility and performance.
Benchmark results provided in this chapter demonstrate that iLQGames.jl can keep up
with execution times of a comparable C++ implementation.
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The second contribution (Chapter 4) is an investigation into game-theoretic planning under
equilibrium uncertainty in HRI. This chapter is concerned with scenarios in which a robot
has full knowledge of the objectives of other players but there exist multiple equilibria
that may characterize the human behavior. To address this problem, a particle filtering
technique is presented that estimates the likelihood of multiple equilibria from observations
of the state. Based on this, a planning model is proposed that uses these likelihood
estimates to align the robot’s strategy to the most likely equilibrium. The approach is
evaluated in simulations of a 3-player game between a robot and two humans that seek
to navigate an intersection. A comparison of the equilibrium inference method with a
game-theoretic baseline that ignores equilibrium uncertainty admits two main insights.
First, by inferring the equilibrium that characterizes the human behavior, the robot is
able to predict their trajectories more accurately. And second, by aligning its strategy to
the inferred equilibrium, the robot is able to reduce the cost of all players. A case study of
a scenario in which the robot invokes a misaligned strategy shows that misalignment can
cause a coordination failure in which the strategies of two or more players are rendered
highly inefficient. Finally, timing results show that the proposed equilibrium inference
planner can be run at real-time planning rates for the 3-player example. When scaled to
five players, real-time planning is not achieved but the runtime remains moderate.
The third contribution (Chapter 5) is an extension of the approach proposed in Chapter 4
to scenarios with incomplete knowledge of the objectives of human players. For this
purpose, the inference approach presented in Chapter 4 is augmented to additionally
reason about latent objective parameters of other players. The augmented approach is
evaluated on two different versions of the 3-player intersection driving problem studied in
Chapter 4. First, a problem in which the aggressiveness, i.e. the extend to which a players
is willing to make room for others, of human players is unknown, and second, a problem
where the goal location of human players is unknown. The objective inference approach is
compared to an approach that uses only equilibrium inference and the baseline approach
of Chapter 4. The advantage of objective inference over all other approaches is clear with
respect to both prediction and planning performance. While the baseline approach is
clearly dominated, equilibrium inference ignoring objective uncertainty still shows good
performance in many cases. It is found that this good performance of equilibrium inference
is enabled by a structural similarity between equilibria for different objectives in the
studied intersection driving problems. Due to this structure, even if the robot assumes
an incorrect objective for a human player, equilibrium inference is still able to predict
whether this human will wait or whether she wants to pass first since both behaviors
are also captured by the incorrect objective model. Nonetheless, objective inference still
improves the performance of the robot, particularly improving the accuracy of long-term
predictions and reducing the worst-case cost for the robot in closed-loop interaction with
humans.
The final contribution (Chapter 6) is an approach for fitting objective models to datasets
of noise-corrupted partial state observations of multi-player interactions; i.e. the inverse
differential game problem. The proposed approach works by numerically inverting the solver
presented in [1] via differentiable programming, allowing a gradient-based optimization of
objective model parameters. A validation on synthetic datasets of observed multi-player
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interactions demonstrates that the proposed approach can reliably fit a model that matches
the observations and accurately predicts the objective parameters of the model that was
used to generate the data.

7.2 Future Work

There are many promising directions for future work to proceed from the results presented
in this thesis. The discussion at the end of Chapters 4 to 6 gives short-term specific
extensions to the individual research efforts described therein. This section gives a broader
overview.
The first line of future work is to test the performance of the proposed planning approach
in interaction with real human behavior. In this work, human behavior is assumed to
be approximately characterized by a local Nash equilibrium of the game and a Monte
Carlo study performed in Chapters 4 and 5 indicates that the corresponding equilibrium
strategies constitute plausible behavior. However, it remains to be quantified to which
extend real human behavior deviates from this equilibrium concept and further experiments
are necessary to test the robustness of the inference-based planning approach in closed-loop
interaction with such behavior. In a first step, this could be realized in a human-in-the-loop
simulation. Thereafter, validation in a hardware experiment or on a real-world dataset
(e.g. [10]) must be performed. Another important investigation in this context is to test
whether human equilibrium preferences are fixed, or whether they change over time in
response to the decisions of other players. If the latter behavior is observed, the proposed
inference method must be adapted to account for the dynamics of these preferences. This
can be achieved by defining a transition model for the latent equilibrium state in the
inference framework.
The second line is focused on scalability of the proposed planning approach. While this
work demonstrates near real-time performance of the proposed planning approach in
problems with up to three players and a small number of unknown objective parameters,
scaling to more complex problems remains challenging. In particular, the number of
samples required to cover high-dimensional latent spaces in problems with many possible
objectives of other players is an important limiting factor for the proposed particle filtering
approach. Chapter 6 shows that objective model parameters can be estimated using a
gradient-based approach to solve the inverse differential game problem. While in this work,
this inverse game solver has been discussed as a tool for offline estimation of objective
models from previously recorded datasets of observed behavior, future work should focus
on developing an online inference method that uses this approach to update the objective
model parameters as new state observations are received. Here, a possible direction is
to combine the approaches discussed in Chapters 4 to 6 to a particle filtering technique
that uses weighted samples to represent equilibria and updates the objective model for
each particle using the inverse game approach. Given the effectiveness of gradient-based
methods for optimization of models with many parameters, such as artificial neural
networks, research efforts in this direction are also important to improve the flexibility of
the planning approach.
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Finally, the proposed planning approach can be extended to use more information from the
belief it maintains over possible human strategies. In the current formulation, the planning
approach uses only the most likely hypothesis in this belief to make control decisions.
While this approach is a good approximation in many cases, it may lead to unsafe behavior
if there are multiple likely hypotheses in the belief. Since the approach maintains a particle
belief over equilibria and corresponding feedback strategies, a wide range of approximate
planning techniques for partially observable Markov decision processes may be used to
make better decisions in the face of high uncertainty. A commonly used approximation
that has been shown to provide good performance in other areas of decision making under
uncertainty is generalized QMDP [4, 77]. In the context of the game-theoretic planning
problems studied in this work, a QMDP approach requires to solve an optimization problem
in which the robots strategy is evaluated against all possible human strategies in the belief.
Further research efforts are required to test whether this optimization problem admits a
tractable solution.
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[37] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory. SIAM, 1999.
[38] L. C. Evans and P. E. Souganidis, “Differential games and representation formulas for

solutions of Hamilton-Jacobi-Isaacs equations.”, Wisconsin University Mathematics
Research Center, Tech. Rep., 1983.

[39] P.-L. Lions and P. E. Souganidis, “Differential games, optimal control and directional
derivatives of viscosity solutions of Bellman’s and Isaacs’ equations”, Journal on
Control and Optimization, vol. 23, no. 4, pp. 566–583, 1985.

[40] R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare
and Pursuit, Control and Optimization. Courier Corporation, 1999.

[41] V. Conitzer and T. Sandholm, “Complexity results about Nash equilibria”, in
International Joint Conferences on Artificial Intelligence (IJCAI), 2003.

85



[42] E. V. Mazumdar, M. I. Jordan, and S. S. Sastry, “On finding local Nash equilibria
(and only local Nash equilibria) in zero-sum games”, ArXiv:1901.00838, 2019.

[43] Z. Wang, R. Spica, and M. Schwager, “Game theoretic motion planning for multi-
robot racing”, in Distributed Autonomous Robotic Systems, Springer, 2019, pp. 225–
238.

[44] M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game theoretic
planning for self-driving cars in competitive scenarios”, in Robotics: Science and
Systems, 2019.

[45] S. L. Cleac’h, M. Schwager, and Z. Manchester, “Algames: A fast solver for con-
strained dynamic games”, ArXiv:1910.09713, 2019.

[46] M. Chen, J. F. Fisac, S. Sastry, and C. J. Tomlin, “Safe sequential path planning
of multi-vehicle systems via double-obstacle Hamilton-Jacobi-Isaacs variational
inequality”, in European Control Conference (ECC), 2015.

[47] D. Fridovich-Keil, V. Rubies-Royo, and C. J. Tomlin, “An iterative quadratic
method for general-sum differential games with feedback linearizable dynamics”,
ArXiv:1910.00681, 2019.

[48] M. Green and D. J. Limebeer, Linear Robust Control. Courier Corporation, 2012.
[49] H. Mukai, A. Tanikawa, I. Tunay, I. Katz, H. Schättler, P. Rinaldi, I. Ozcan, G. Wang,

L. Yang, and Y. Sawada, “Sequential linear quadratic method for differential games”,
in In Proceedings of the DARPA-JFACC Symposium on Advances in Enterprise
Control, 2000.

[50] A. Tanikawa, H. Mukai, and M. Xu, “Local convergence of the sequential quadratic
method for differential games”, Transactions of the Institute of Systems, Control
and Information Engineers, vol. 25, no. 12, pp. 349–357, 2012.

[51] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear
biological movement systems”, in ICINCO, 2004.

[52] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems”, in American Control
Conference (ACC), 2005.

[53] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.
[54] M. Kochenderfer, Decision Making Under Uncertainty: Theory and Application,

ser. MIT Lincoln Laboratory Series. MIT Press, 2015.
[55] D. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific, 2005.
[56] M. H. DeGroot and M. J. Schervish, Probability and Statistics. Pearson Education,

2012.
[57] R. E. Kalman et al., “A new approach to linear filtering and prediction problems”,

Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
[58] M. Simandl and O. Straka, “Sampling densities of particle filter: A survey and

comparison”, in American Control Conference (ACC), 2007.

86



[59] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”, in IEE Proceedings F, vol. 140, 1993.

[60] N. M. Kwok, G. Fang, and W. Zhou, “Evolutionary particle filter: Re-sampling from
the genetic algorithm perspective”, in International Conference on Intelligent Robots
and Systems (IROS), 2005.

[61] J. D. Hol, T. B. Schön, and F. Gustafsson, “On resampling algorithms for particle
filters”, in Proceedings of the IEEE Nonlinear Statistical Signal Processing Workshop,
2006.

[62] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle filtering:
Classification, implementation, and strategies”, IEEE Signal Processing Magazine,
vol. 32, no. 3, pp. 70–86, 2015.

[63] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters”,
Journal of the American statistical association, vol. 94, no. 446, pp. 590–599, 1999.

[64] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast dynamic
language for technical computing”, ArXiv:1209.5145, 2012.

[65] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentiation
in Julia”, ArXiv:1607.07892, 2016.

[66] J. Regier, K. Fischer, K. Pamnany, A. Noack, J. Revels, M. Lam, S. Howard,
R. Giordano, D. Schlegel, J. McAuliffe, et al., “Cataloging the visible universe
through Bayesian inference in Julia at petascale”, Journal of Parallel and Distributed
Computing, vol. 127, pp. 89–104, 2019.

[67] S. J. DeCanio and A. Fremstad, “Game theory and climate diplomacy”, Ecological
Economics, vol. 85, pp. 177–187, 2013.

[68] P. G. Straub, “Risk dominance and coordination failures in static games”, Quarterly
Review of Economics and Finance, vol. 35, no. 4, pp. 339–364, 1995.

[69] L. H. Summers, “International financial crises: Causes, prevention, and cures”,
American Economic Review, vol. 90, no. 2, pp. 1–16, 2000.

[70] D. Schmidt, R. Shupp, J. M. Walker, and E. Ostrom, “Playing safe in coordination
games:: The roles of risk dominance, payoff dominance, and history of play”, Games
and Economic Behavior, vol. 42, no. 2, pp. 281–299, 2003.

[71] J. C. Harsanyi, R. Selten, et al., “A general theory of equilibrium selection in games”,
MIT Press Books, vol. 1, 1988.

[72] J. C. Harsanyi, “The tracing procedure: A Bayesian approach to defining a solution
for n-person noncooperative games”, International Journal of Game Theory, vol. 4,
no. 2, pp. 61–94, 1975.

[73] ——, “A new theory of equilibrium selection for games with complete information”,
Games and Economic Behavior, vol. 8, no. 1, pp. 91–122, 1995.

[74] J. B. Van Huyck, J. P. Cook, and R. C. Battalio, “Adaptive behavior and coordination
failure”, Journal of Economic Behavior and Organization, vol. 32, no. 4, pp. 483–503,
1997.

87



[75] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains”, Artificial Intelligence, vol. 101, no. 1,
pp. 99–134, 1998, issn: 0004-3702.

[76] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov decision
processes”, Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450, 1987.

[77] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially
observable environments: Scaling up”, in International Conference on Machine
Learning (ICML), 1995.

[78] L. Peters, “Partially observable Markov decision processes for planning in uncertain
environments”, Project Thesis, Aug. 2019.

[79] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for dis-
covering clusters in large spatial databases with noise.”, in International Conference
on Knowledge Discovery and Data Mining (KDD), vol. 96, 1996.

[80] A. K. Jain, “Data clustering: 50 years beyond K-means”, Pattern Recognition Letters,
vol. 31, no. 8, pp. 651–666, 2010.

[81] J. Hu, M. Prandini, and S. Sastry, “Optimal maneuver for multiple aircraft conflict
resolution: A braid point of view”, in IEEE Conference on Decision and Control
(CDC), vol. 4, 2000, pp. 4164–4169.

[82] S.-Y. Ko, J. Kim, W.-J. Lee, and D.-S. Kwon, “Surgery task model for intelligent
interaction between surgeon and laparoscopic assistant robot”, International Journal
of Assitive Robotics and Mechatronics, vol. 8, no. 1, pp. 38–46, 2007.

[83] J. Shi, G. Jimmerson, T. Pearson, and R. Menassa, “Levels of human and robot
collaboration for automotive manufacturing”, in Proceedings of the Workshop on
Performance Metrics for Intelligent Systems, 2012.

[84] G. A. Bekey, “System identification – an introduction and a survey”, Simulation,
vol. 15, pp. 151–166, 1970.

[85] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse rein-
forcement learning”, ArXiv:1507.04888, 2015.
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Appendix A

Planning Performance with
Increased Number of Particles

P1 P2 P3 P4 P5

1000

1500

2000

2500

3000

(a) InferEQ

player

co
st

P1 P2 P3 P4 P5

1000

1500

2000

2500

3000

(b) Baseline

player

co
st

Figure A.1.1: Distribution of costs for strategy alignment in a 5-player navigation problem
for different numbers of particles. (a) Player-1 uses strategy alignment with 150 particles.
(b) Player-1 uses strategy alignment with 300 particles.
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Appendix B

Complete Monte-Carlo Study for
Chapter 5

Below, the complete Monte Carlo study for two evaluation problems of Section 5.3 are
presented. Each figure is created from 300 random initial strategy profile and equilibria
are grouped via spatial clustering of the trajectories. Within each figure, clusters are
sorted from left to right in ascending order of cost incurred by Player-1. The initial
position of each player as well as their position at half the simulation horizon is highlighted,
respectively, with a rectangular and a circular marks.
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B.1 Uncertain Aggressiveness
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Figure B.1.1: Clustered local equilibria if both human players have a high proximity cost
weight (non-aggressive). Θ = [cprox,2; cprox,3] = [c̄prox; c̄prox].
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Figure B.1.2: Clustered local equilibria if Player-2 (red) has a low proximity cost weight
(aggressive) and Player-3 (purple) has a high proximity cost weight (non-aggressive).
Θ = [cprox,2; cprox,3] = [cprox; c̄prox].
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Figure B.1.3: Clustered local equilibria if Player-2 (red) has a high proximity cost weight
(non-aggressive) and Player-3 (purple) has a low proximity cost weight (aggressive).
Θ = [cprox,2; cprox,3] = [c̄prox; cprox].
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Figure B.1.4: Clustered local equilibria if both players have a low proximity cost weight
(aggressive). Θ = [cprox,2; cprox,3] = [cprox; cprox].
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B.2 Uncertain Goal Positions
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Figure B.2.1: Clustered local equilibria if both human players want to go straight.
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Figure B.2.2: Clustered local equilibria if Player-2 (red) wants to turn left and Player-3
(purple) wants to go straight.
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Figure B.2.3: Clustered local equilibria if Player-2 (red) wants to go straight and Player-3
(purple) wants to turn left.
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Figure B.2.4: Clustered local equilibria if both human players want to turn left.
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Appendix C

Supplementary Example for
Chapter 6
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Figure C.1.1: Example of inverse ILQG with highest final error among all simluations. In
(c), scattered points indicate observed position measurements, solid violet lines indicate
the true game solution, and solid blue lines correspond to the recovered game solution for
the final parameter estimate.
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